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In recent work with symmetric chaotic systems, we synchronized two such

systems with one-way driving. The drive system had 2 possible attractors, but the

response system always synchronized with the drive system. In this work, we show how

we may combine 2 attractor chaotic systems with a multiplexing technique first

developed by Tsimring and Suschick to make a simple communications system. We note

that our response system is never synchronized to our drive system (not even in a

generalized sense), but we are still able to transmit information. We characterize the

performance of the communications system when noise is added to the transmitted signal.
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Introduction

It has been suggested recently that chaotic systems might be useful for

communications [1-13]. There are many practical problems that arise when a chaotic

signal is transmitted. Among these problems is additive noise. In some communications

schemes, a small information signal modulates a parameter in a chaotic system (or is

added to the transmitted chaotic signal). The lack of synchronization at the receiver

indicates the presence of the information signal, and the synchronization error is used to

recover the information. When the information signal is small, it should not take much

noise to obscure the information.

In conventional digital communications systems, one tries to decide which of

several symbols has been transmitted in a noisy environment using the principal of

maximum likelihood [14]. If there are several possible symbols that might have been

transmitted, the most likely symbol is taken to be the received symbol. Naturally, this

estimation is easier if the symbols are far apart in some symbol space. For our chaotic

communications system, we use two widely separated attractors for our two symbols. We

then combine signals from two chaotic systems so that our transmitted signal has no DC

component. We follow this procedure with two different chaotic systems, and compare

signal to noise performance.

Multiple attractor systems

The basic principle that we will use has been described previously [15] in a 4-

dimensional circuit. The circuit had a symmetric nonlinearity, so that for some parameters

the circuit had two symmetric attractors. We built a drive circuit which drove a response

circuit through a one-way driving. Normally, one would expect that the response circuit

would also have two attractors, so that the response would not synchronize to the drive

unless the response circuit was in the correct basin of attraction. For some parameters,

however, the out-of-sync attractor in the response circuit was near neutral stability. After

a few cycles in the out-of-sync attractor, the response system converged to the in sync

attractor.
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The response circuit recognized which attractor the drive circuit was in based only

on the transmitted signal. In principle, one could use the two drive circuit attractors for

communications symbols. Since the attractors were well separated, it should be easy to

distinguish the two attractors in a noisy environment.

One practical problem is that the transmitted signal can contain no DC

components. It may be difficult to find a multi-attractor system where the transmitted

signal meets this requirement. We can, however, design chaotic systems where the

transmitted signal has no DC component. Tsimring and Suschick [12] showed in chaotic

maps one could add signals from several chaotic systems and use chaotic synchronization

to separate the signals at a receiver. We use this technique to transmit a sum of chaotic

signals. We add the signals so that the DC components are canceled.

General layout

Figure 1 is a block diagram of our technique applied to a pair of 3-dimensional

chaotic systems. Drive systems A and B do not have to be identical, although in this

paper we will use identical systems for simplicity. A and B are both symmetric nonlinear

systems (they do not have to be chaotic) with 2 attractors each. We form a linear

combination of signals from A and B. We choose the linear combination so that the DC

level of the transmitted signal u is 0. If we have identical systems in opposite attractors,

this requires that k4 = k1,  k5 = k2, and k6 = k3 . For non identical systems, the k's must be

chosen appropriately so that the time average of u is 0. The idea of making a linear

combination of drive variables comes from control theory [16] and the work of Peng et al.

[17] who used this technique to synchronize hyperchaotic systems. We have shown [18]

that such a technique can make the response system very stable and insensitive to

parameter mismatch.

To change symbols, we can either flip the attractors in A and B or we can invert

the transmitted signal u, which is equivalent. In some cases, changing the attractors might

have advantages, but here we choose the simpler approach of multiplying the transmitted

signal u by s = ±1 to produce us = su . The signal s is our binary information signal.
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The response systems are A' and B'. We make an identical linear combination of

variables from A' and B' to make u' , and generate a difference signal v = us - u' . The

difference signal is multiplied by one of the constants bi (i = 1,6) and fed back into the

response systems. The k's and b's are chosen by using a numerical minimization routine

[19] to minimize the largest Lyapunov exponent for the response system.

Complications of multiplexing

Tsimring and Suschick [12] found that when they multiplexed chaotic signals

from several maps and tried to separate the signals using chaotic synchronization, the

response systems had large local instabilities that caused bursting away from

synchronization when noise was added to the transmitted signal. We see the same effect

in our systems. We show below that multiplexing by using linear combinations of

chaotic signals with diffusive coupling always results in an unstable response system

when the response system consists of two identical chaotic systems. We will show that

under some conditions it might be possible to use non identical response systems that will

be stable, although we do not know of any such systems.

The general setup is as follows,
d
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where d and r label drive and response, respectively, u is the signal sent to the response

systems, and B(i) and K(i) are the coupling vectors for system pairs i=1 and 2.  The goal

is to synchronize d1 with r1 and d2 with r2 in a stable fashion.  The coupling is typical of

what is used in control theory [16] and it was introduced by Peng et al. [17] to first prove

that synchronizing hyperchaotic systems with scalar signals is possible.   We have used

such coupling to synchronize hyperchaotic maps [20, 21] and to mitigate against
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parameter mismatch [18].  It is the most general form of linear coupling using a scalar

signal.

To establish our goal we examine the variational equation of the response system,

shown below in block form.
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Note that in eq. (2) the product of the B and K vectors is an outer product which results in

a coupling matrix C in block form,

C =
B(1)K(1) T

B(1)K(2 )T

B(2 )K(2 )T B(2 )K(1)T

  

 
 

  

 
 
, (3)

but we prefer to leave the coupling expressions in the outer product form since that will

make the analysis clearer.  What we want to do first is to block diagonalize eq. (2) to

isolate the transverse blocks.  If we can then show each block is stable we are done.

If the systems are identical the Jacobians J (r1)  and J (r2 )  are also identical which

makes the first term in eq. (2) a multiple of the 2 x 2 identity matrix.  Hence, in this case

we only need focus on the second term, the BK-outer-product matrix, to determine an

eigenvalue block structure of the variational equation.  The outer product structure

immediately yields two eigendirections and their associated eigenvalues. Let χ1=(B(1),

B(2))T , then we easily see that this is an eigenvector of the BK-outer-product matrix

with the eigenvalue K(1)TB(1)+K(2)TB(2).  With the right choice of B's and K's we

usually can make the Lyapunov exponents of this block matrix negative.

The other block is associated with the vector χ2=(–K(2), K(1))T and its eigenvalue is

0.  We can see that the 0 eigenvalue results from an eigenvector χ2 that is orthogonal to

the (K(1), K2))T vector.  When combined with the Jacobian matrix this leaves a

variational block that has the same stability as an isolated, uncoupled system, like the

drive.  Since we are dealing with chaotic systems this means we cannot stabilize the
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synchronous state.  The 0 eigenvalue is a result of the structure of the coupling matrix and

so is generic for this form of coupling.

If we examine a multiplexing setup with many drives and responses the situation

worsens for synchronization stability.  In this case for N drives and N responses the

coupling signal is given by  u i T di

i

N
= ∑

=
K x( ) ( )

1
 and the coupling matrix is the outer-product

matrix,

C =

B(1)

B(2 )

M

B(N )
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 
 

  

 
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 

K(1)T K(2 )T L K(N )T( )
(4)

In analogy with our 2-drive system above the vector χ1=(B(1), B(2),...,B(N))T is an

eigenvector with eigenvalue Σi K(i)TB(i).  We also have N–1 vectors χi , i = 2,...,N–1

which are orthogonal to (K(1), K(2),...,K(N))T and, hence, there are N–1 zero

eigenvalues.  This results in N–1 blocks whose stability is the same as the isolated system

and, again, we cannot stabilize the synchronous state.

We note that there may be some relief from the situations above in using slightly

different systems.  Assume that the associated drives and responses (d1–r1 and d2 –r2)

are identical, but F(d1) and  F(d2) are different.  This leads to different Jacobians.  Let ∆J

be one-half the difference between the Jacobians, so that J(1)=J+∆J and J(2)=J–∆J.

This will perturb the λ2 = 0 eigenvalue and if ∆J is not too large we can estimate that

perturbation using first-order perturbation theory [22, 23].  This give a new eigenvalue of

λ2
' = λ2 + K(2 )T ∆J K(2 ) − K(1)T ∆J K(1) , where λ2 an the eigenvalue of the isolated

system.  If we can adjust the vector fields so that ∆J is positive (or negative) definite,

then with the right choices of  K(1) and K(2) we may be able to cause λ'
2
 to become

negative leading to stability of the synchronous state, providing we can simultaneously

maintain the stability of the block associated with eigenvector χ1.  We have not

attempted to do this here, but instead we concentrate on systems that are in discernibly

different states, depending on the drive systems, although there is no synchronization.
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Non-synchronous response systems

Our response systems A' and B'  actually do not synchronize to the drive systems

A and B. In our case, this lack of synchronization is not a problem because we are not

interested in synchronization itself but rather in determining which attractors the drive

systems are in. We will see below that even without  synchronization, we have more than

enough information to determine the drive system attractors.

If our response system will never be stable, how is it possible to keep the motion

of the response system bounded? One would guess that for certain parameter

combinations, the unstable response system might have no attractors at all. While we

know that the largest Lyapunov exponent for the response system can never be negative,

there are some concepts used in the calculation of Lyapunov exponents that can be useful.

If we were only interested in the largest Lyapunov exponent for a

multidimensional system, we would only need to know how a small perturbation vector

changed in time. One common approach for estimating Lyapunov exponents is: 1) Find a

Jacobian J for the response system; 2) form a randomly chosen unit vector ξ(0)  and

multiply the vector by the Jacobian. The result is a derivative vector that describes how

the unit vector will change in one time step ( d dtξ ξ/ = ⋅J  ); 3) using some integration

algorithm, use the derivative vector to find a new vector ξ(t) from the unit vector ξ(0); 4)

after some number of integration steps, compare the magnitude of the new vector to the

original unit vector. The ratio ||ξ(t)||/||ξ(0)|| (for a properly chosen integration time) will

be eλt, where λ  is the largest Lyapunov exponent for the response system.

If the eigenvectors for the response system are not orthogonal, then this

calculation can yield misleading results. It is known [2, 24] that for a stable response

system, the magnitude of the difference between drive and response can increase (burst)

before shrinking. We find that for the type of response systems that we describe here,

even though the response system is unstable, the magnitude of the difference between

drive and response can shrink before growing.

We show a simple example, using the Jacobian of the system described in eq. (6).

We use only the Jacobian for the variables x1 and x4 less than 3 and greater than -3, so
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that the Jacobian is constant. We set the k and b parameters as: k1 = 0.5352977, k2 =

1.19088, k3 = 0.2072838, k4 = k1 , k5 = k2 , k6 = k3 , b1 = 6.61433, b2 = -0.463105, b3 =

0, b4 = 0.583074, b5 = -1.11178, b6 = 0. The magnitude of the largest eigenvalue for the

response Jacobian for these parameters is 1.84, indicating that the response system will

not synchronize to the drive.

We begin with the unit vector (1/√6)(1,1,1,1,1,1) = v(0). We multiply by the

Jacobian J to get J⋅ v(0) = dv(0)/dt. We use the simplest possible integration algorithm to

update v(0): v(1) = v(0) + τ (dv(0)/dt), where τ is the time step. We arbitrarily use a time

step of τ  = 0.1. We then iterate this process to produce new vectors v(n).

Figure 2 shows the value of v(n) for values of n from 0 to 99. We see that even for

an unstable response, the value of v(n) may decrease as well as increase. Eventually, the

drive and response systems do diverge. The results in Fig. 2, were very dependent on the

time step used, so Lyapunov exponent calculations based on vector differences are not

reliable for the type of system shown in Fig. 1.

The Lyapunov exponent calculation does have some use in setting up a

communications system. By minimizing the length of the vector v(n) for some large n,

we guarantee that the difference between drive and response systems will not grow too

large in a short time. We are able to insure that our feedback signal does not destabilize

the response system by too much, so the response still has the same two attractors as the

drive.

Our communication system does not depend on systems A or B being chaotic.

Periodic nonlinear systems may also have multiple attractors. We do require that A and B

not be in the same state at the same time; otherwise, the transmitted signal u will be 0.

Using chaotic systems for A or B prevents any accidental locking between A and B

caused by spurious coupling. If A and B were periodic systems that were locked in phase

or frequency, then the signal u might be zero or have some DC offset.

Symmetric Rossler system

Two Attractor Signaling
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We first use a 3-dimensional system that is similar to the Rossler system. Our

symmetric Rossler system has a symmetric piecewise nonlinearity. The system is

described by:
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where ρ  = 0.25, α 0 = 1.2 and α  1 = 1. The k parameters are given below.  There are two

chaotic systems (i = 0 and i = 1) corresponding to A and B in Fig. 1. Each drive system

was in an opposite attractor.

We numerically integrated eqs. (5) with a 4-th order Runge-Kutta integration

routine [19] with a time step of 0.2 s. Figure 3(a) shows the one of the attractors from the

symmetric Rossler system, while Fig 3(b) shows the other. We will call these two

attractors the + attractor and the - attractor. Figure 4 shows the transmitted signal u,

showing that the time average of u is zero.

The response system is described by
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where the parameters are the same as in eq. (5). The parameter s = ±1 is our

binary information signal, as described above. The k's were k1 = -1.2824, k2 = 1.91712,

k3 = 1.19166, k4 = k1, k5 = k2 , and k6 = k3 and the b's were b1 = 1.09793, b2 = 0.65328,

b3 = 0, b4 = 1.62025, b5 = 1.12384, b6 = 0.  We chose the k's and b's by minimizing the

largest finite time Lyapunov exponent for the response system using 1000 time steps at

0.2 s per time step, although as we mention above, the result of our calculation is not a

true Lyapunov exponent.

To decode the transmitted message, we simply track whether system A' is in the +

attractor or the - attractor. To aid in the detection, we use a low pass filter. We can change

the value of s at time t = nT, where T is one clock period. We assume that the clock in the

receiver is already synchronized to the transmitter clock. Most performance calculations

for binary modulation techniques are done assuming clock synchronization has been

achieved [14]. Our detector is described by

dw

dt
x w

n

t nT w

= −

=
= =

'

, , ,...

3

0 1 2

0if   then 

                                                                   (7).

At time nT ,  just before resetting, a positive value of w indicates that s = +1, while a

negative value of w  indicates s = -1.
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Figure 5 shows the detection process. Figure 5(a) shows the value of s with T =

8s. Figure 5(b) shows the value of x'3 from eqs. (6), while Fig  5(c) shows the detector

output w .

We characterized the performance of our communications system when subject to

noise by calculating the probability of bit error Pb as a function of the ratio of bit energy

Eb to noise power spectral density N0 . We integrated eqs. (5-7) for 800,000 steps with a

time step of 0.2 s. We set the value of s at +1 and reset the detector variable w to 0 every

T = 40 s. We measured the value of w just before resetting. If the value of w was not

greater than 0, a bit error was recorded.

We added Gaussian noise to the transmitted signal u . We changed the variance of

the noise to change the power spectral density N0 . We calculated the bit energy Pb by

finding the average power in the transmitted signal and multiplying by the data period T.

In Figure 6 we plot the bit error rate Pb as a function of Eb/N0 . For comparison, we also

plot Pb for a bipolar binary baseband signaling system, as calculated in [14]. A "bipolar

binary baseband" signal consists of sending +1 or -1, as if we were transmitting only s.

Parameter Modulation Signaling

As an additional comparison in Fig. 6, we used the system of eqs. (5-7) to

transmit information using parameter modulation. We switched the parameter ρ  in the

transmitter between 0.25 and 0.2, while keeping all parameters in the receiver fixed.

When ρ  was 0.2, the transmitter and receiver were not matched, and so did not

synchronize. We used the error signal v in eq. (6) to detect the information signal. Our

detector was again a low pass filter that used the square of v :

dw

dt
v w

n

t nT w

= −

=
= =

2

0 1 2

0

, , ,...

if   then 

                                                        (8)

The bit period T  was 200 s. We added Gaussian white noise to the transmitted signal as

before and ran numerical simulations to find the bit error probability Pb as a function of

Eb/N0 . We plot these results in Fig. 6. From the figure, we can see that to achieve a given
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bit error probability, using two attractor signaling requires about 40 dB (a factor of

10,000) less energy per bit.

Alternate Circuit.

We have seen above that using two attractor signaling performs better than

parameter modulation signaling. The symmetric piecewise linear Rossler system we used

above is actually not the best system to use for two attractor signaling. The + and -

attractors in the Rossler system that we used are not well separated. We might be able to

get a communications system that was more robust to noise if we used a system with

attractors that were farther apart. We describe such a system below, where the average of

the measured signal x'4 was 1.47, compared to an average value of  0.29 for the measured

signal x'3 in the piecewise linear Rossler system of eq. (6).

Our improved communications system uses a four dimensional chaotic system,

described by
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This system is similar to the system used in [15], except that the g3 function has been

simplified.
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Figure 7(a) is a plot of the + attractor for this system, while Fig. 7(b) is a plot of

the - attractor. There is a better separation between the + and - attractors than there was

for the + and - attractors in the symmetric Rossler system of eq. (5).

We use a pair of these 4-dimensional chaotic systems in the same manner as the

example of Fig. 1. The receiver uses two copies of the 4-D system with coupling

constants k1 = -1.14018, k2 = 1.17253, k3 = -0.714629, k4 = -0.45176, k5 = -k1, k6 = -k2 ,

k7 = -k3 , k8 = -k4 , b1 = 0, b2 = 1/k1 , b3 = 0, b4 = 1/k1, b5 = b1 , b6 = b2 , b7 = b3 and b8

= b4 . Once again, the transmitted signal has no DC component.

 We include the probability of bit error Pb as a function of bit energy/noise

spectral density for the system of eq. (9) on the plot in Fig. 6. We can see that using

widely separated attractors does improve the noise resistance of our two-attractor

communications system. With some small improvements in our signaling scheme, we are

approaching the efficiency of existing digital signalling techniques.

Conclusions

Tsimring and Suschick  noted that there was a maximum number of maps that

they could synchronizing using their multiplexing technique, and they could not see

synchronization in coupled flow systems. Our results here explain why they could not see

synchronization in flows.

We have shown that using attractors for symbols can improve the noise

robustness of a chaotic communications system by several orders of magnitude. Our

receiver does not have to be synchronized to the transmitter, it only has to tell us which

attractor the transmitter is in. A two attractor chaotic communication system can

approach the noise robustness of conventional communications systems.
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Fig. 1 Block diagram of a 2-attractor chaotic communications system. A and B are

chaotic systems in the transmitter, while A' and B' are chaotic systems in the response.

The information signal, s, is ± 1.
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Fig. 2. Magnitude of distance vector v (n) between chaotic response and drive systems, as

determined from the Jacobian of eqs. (6). Although the response system is unstable, for

some intervals the response vector can shrink as well as grow, possible giving a false

result in a Lyapunov exponent calculation.
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Fig. 3 (a) is the + attractor for the symmetric Rossler system of eq. (5). (b) is the -

attractor for the symmetric Rossler system of eq. (5).
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Fig.4 Transmitted signal u from the symmetric Rossler system, before being multiplied

by the information signal s . The modulation of the signal is caused be the difference

between the center frequencies of the two Rossler systems.
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Fig. 5 (a) is the information signal s . (b) is the signal x'3 from the response system. (c) is

w , the output of the signal detector.
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Fig. 6 Probability of bit error Pb as a function of energy per bit Eb divided by noise power

spectral density N0 for several different communications systems. (a), the solid line, is an

analytic example for a bipolar baseband signal from [14], shown for comparison. (b), the

solid circles, is the result for the symmetric Rossler system of eqs (5-8) using two

attractor signaling. (c), the solid squares, is the result for the symmetric Rossler system of

eqs. (1-3) using parameter modulation. (c), the open circles, is the result for the 4-D

system of eq. (5) using two attractor switching.
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Fig. 7(a) The + attractor for the 4-D system of eq. (9). (b) The - attractor for the 4-

D chaotic system of eq. (9).


