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Abstract

We show that one can use recently introduced statistics for continuity and differentiability
to show the effect of filters of infinite extent in time on a chaotic time series. The
statistics point to a discontinuous or nondifferentiable function between the unfiltered
attractor and the filtered attractor asthe origin of attractor dimension increase when the
filtering issevere. The density of discontinuities as a function of resolution follows a
scaling relation. We present direct visualization of this effect in the filtered Henon

attractor where the origin of dimension increase becomes obvious.
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l. Introduction

In this paper we show that recently devised statistics for testing continuity and
differentiability [1] can be useful in testing for damage to a chaotic time series from the
application of afilter. Wefirst outline past explorations into the filtering of chaotic time
series. We then introduce the statistics and show their application to filtered data sets.
The results suggest away to view filtering of atime series which explains why any filter
of infinite extent in time has potential to increase the dimension of a chaotic attractor.

Filtering of time-series datais common-place in signal processing, but filtering of
data from a chaotic system can lead to atime-series that does not convey the correct
information about the original system. Thiswasfirst demonstrated by Badii et al [2]
using a low-pass dynamical filter, commonly called alinear, time-invariant filter (LTI).

The LTI filter isgiven by

d—Z:-hz+x1
dt

: (1)
where zis the result of filtering and x1 is a component of the dynamical system x = F(x),
i.e. Xpgenerates the time-series that is filtered by weighted averaging into the past.

Badii et al showed that when the time seriesis highly filtered (small h values) the
attractor reconstructed from the filtered time series z has adimension that is larger than
that of the original attractor. They went on to show that because of the dynamic nature of
the filter the dimension increase could be correlated with an increase in the Kaplan-Y ork
dimension [3]. Later Badii et al showed that one can also view the dimension increase as
a phase transition, using a thermodynamics approach to dimensions [4].

Chennaoui et al showed a mechanism for dimension increase for the particular case of
an LTI filter acting on the logistic map [5]. For the logistic map parameter value of r=4,
they obtained analytic results. Their work showed that in this particular case the filter
induces self-similarity in the density of pointsin the two-dimensional space of time-series

points and filtered values.
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Other work by Mitschke [6] showed that acausal filters (which average symmetrically
into the future as well as the past) may do little or no damage to some chaotic time series
even for the highly filtered case. Mitschke suggested that the phase-preserving nature of
the acausal filter kept the dimensions invariant under the filtering. This phase criteria
remains unclear.

Isabelle [7], basing his conclusions on the Lipshitz condition, suggested that problems
would ensue with LTI filters when the filter parameter h exceeded the minimum
Lyapunov exponent of the system. Thisisessentially correct and is related to the
Kaplan-Y orke dimension. We will show that this can occur for filters other than LTI
filters.

Finally, Broomhead et al [8] showed that filters of finite extent in time, for certain
cases called finite impulse response (FIR) filters, would, in principle, induce a
diffeomorphism between the original attractor reconstructed from the signal (x1) and that
reconstructed from the filtered signal (2). The LTI filterslike Eq. (1) and Mitschke's
acausal filter areinfinite in extent or infinite impulse response (I1R) filters and are not
necessarily safe to use. Broomhead et al did point out that in practice FIR filterswith a
very long time window may act like IR filters and for finite precision data cause
problems, too.

In al the forgoing research what becomes clear is the need for a criterion to help
determine when afilter is safe to apply to a data set or use during data collection in an
experiment. The Kaplan-Y orke formula only works for filters that are dynamical
systems. Recently Sauer and Y orke have given such acriteria[9]. They provide a
theorem that shows that when the filtering induces a map from the unfiltered attractor to
the filtered attractor which is continuously differentiable (C1) the dimension quantities
associated with the measure on the attractor (e.g. information or correlation dimensions)

are preserved.
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The theorem implies a need for anumerical algorithm to test for the C1 condition in
filtered data. Below we show how tests for continuity and differentiability we have
devised fulfill thisneed. The tests aso provide statistics that suggest avery interesting
scaling behavior in highly filtered data that is not obvious from dimension measurements.
Thisleads to a clear geometric picture of the action of afilter on a chaotic attractor and an
explanation for dimension increase.
[I. Statistics for Continuity and Differentiability

The action of any convolutional filter on atime series from a dynamical system can
be written as

At)= QR(t- ) x (t)dt' = QR(t - t')(F . [x(t)]), dt , )

where F isthe flow on the system's phase space and R(t) isthefilter. The action of the
LTI filter (EqQ. (1)) can aso be written thisway. Itisnot hard to show [1] that this
induces a point-to-point mapping f from the attractor reconstructed from the original time
series to that reconstructed from the filtered time series: z(t) = f(x(t)), where z isthe time
delay vector generated from z(t), z(t+Dt),... and X is the time delay vector generated from
x1(t), X1 (t+DY),... , etc. The Sauer-Y orke theorem states that we must show that f isa C1
function. We next show how to do this with time-series data

Our goal isto develop smple statistics that are (1) clearly connected to the one
mathematical property they measure and (2) have a separate statistical hypothesis
associated with them. Number (1) criteria guarantees that we are sure what property we
aretesting. Number (2) guarantees we know what we are using as a gauge of that
property. These goalsare, in asense, reversed from what one usually findsin the
literature where tests which are an amalgam of mathematical properties and numerical
algorithms are used to test for attributes which are derived, for example, determinism
[10,11], general synchronization [12], and correct embedding dimension [13,14].
Although these numerical tests can be useful, it is not always clear what mathematical

property is being tested.
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We are testing for continuity (CO) and differentiability (C1). We give two separate
statistical tests, one for each property.

A test for continuity must start with the definition of continuity: the functionf is
continuous at apoint xg if " €0 $ d>0 such that || x—xo|[<d P [[f(x)—f(xg)||<e.. In
simpler termsif we restrict ourselves to some local region around f(xg), then there must
exist alocal region around xg all of whose points are mapped into the f(xg) region. From
this definition we can generate an algorithm to apply to time-series reconstructions.

Our reconstructions are matched in a"one-to-one" fashion (which we call f) in that
for every point x we have a corresponding point z; however, we do not know how points
in local neighborhoods are paired. We choose an e -sized set around a fiducial point zg,
we also choose ad -sized set around it's preimage Xg. We check whether al the pointsin
the d set map into the e set. If not, we reduce d and try again. We continue until we run
out of pointsor al points from a small-enough d set fall inthe e set. We count the
number of pointsinthe e set (ng) and the d set (ng). We do not include the fiducial
points zg or X, Since they are present by construction. Generally ne® ng, Since points
other than those near xg can also get mapped to the e set, but this does not affect
continuity.

We now choose the null hypothesis which helps us generate a probability that one
should find ne and ng pointsin such an arrangement. Many null hypotheses are
possible. We choose the simplest, namely, that placements of the points on the x and z
attractors are independent of each other. This null hypothesisis not trivial. Itistypical
of what one would like to disprove early on in any attractor analysis, namely that the
data have arelation to each other. We will seethat it can show much more.

Given the null hypothesis we approximate the probability of a point from the d set
falling at random inthe e set asp = ne/N, where N is the total number of points on the
attractor. Then the probability that ng pointswill fal inthee setis pnd . Weobtaina

likelihood that this will happen by taking the ratio of this probability to the probability for

5. 10:11 AM, January 28, 1998



L. Pecoraand , Naval Research Laboratory

the most likely event, ppinmax- The latter isjust the maximum of the binomial distribution
for ng points given probability p for each individual event. We see that pnd issimply the
"tail-end" of the binomial distribution. The maximum generally will occur for some
intermediate number of d points, say m(<nq ), fallinginthee set. If pnd « Ppinmax, then
the null hypothesisis not likely and can be rejected.

We define the continuity statisticasQc0=1- pnd IPpinmax: When Qc0 » 1 we can
confidently reject the null hypothesis. The pointsin the e set are behaving as though
they are generated by a continuous function onthed set. When QcO » O we cannot
reject the null hypothesis and the points are behaving as though they are independent.
Note that if we run out of points (ng =0), then we usually take the logical position that we
cannot reject the null hypothesisand set QcO=0. Qc0 will depend on e , the resolution,
and we will examine the statistic for arange of e 's. To get aglobal estimate of the
continuity of f on the attractor we average QcO over the entire attractor or over arandom
sampling of points onit. We present those averages here.

The differentiability statistic is generated in the same vein as the continuity statistic.
We start with the mathematical definition of aderivative and apply it locally to the two
reconstructions. The generation of the linear map that approximates the derivative and
the likelihood estimate associated with it are more complex than for continuity. We show
the detailsin our longer paper [1]. We only outline the differentiability statistic here.

The definition of aderivative at a point Xg isthat alinear operator A exists such that
" e>0$ d>0for which || x—xg|l<d b |If(xg) + A(x—xXg) —f(X)|| < €]| xxol|. This means that
thereisalinear map that approximates the function at nearby points with an error in the
approximation that is proportional to the distance between those points. Note that e
serves a purpose here different from continuity. Here it boundsthe error in alinear
mapping; it does not signify a distance.

The algorithm that we generate from this definition isto first choose an e (error

bound) and ad . Then we find all the pointsin thelocal d set {x;} and their z
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counterparts {z}. We approximate the linear operator A as the |least squares solution of
the linear equations A(xj—Xg) = (zi—zp). The solution is accomplished by singular value
decomposition (SVD) [1]. The |least-squares approach appears to be the best since it
minimizes the errors in approximation which isjust what e is supposed to bound. We
check if || z—zo—A(Xi—X0) || < e || x—Xo||. If not, we decreased and try again with fewer,

but nearer points. We continue this until we have success or we run out of points.

We choose the null hypothesis that the two sets of vectors{x;} and {z} have zero
correlation. We show [1] that this generates a likelihood that any two such sets will give
the operator A "by accident" as e_i(nd (g r2)rd , Where r2 is the usual multivariate
statistical correlation between {x} and {z}, d=min(ry, r), and ry, r; are the ranks of the
x and z spaces that come out of the SVD [1]. Thisisan asymptotic formula. The
differentiability statistic Qcl isgiven by one minusthislikelihood. When Qcl » 1 we
can reject the possibility that the points are accidentally related by alinear operator, a
derivative. When Qc1 » 0, we cannot reject the null hypothesis. As before, when we
shrink d so small that no points other than xg remain, we set Qc1 =0. Analogous to
Qc0, the statistic Qcl dependsone. Wetypically calculate Qcl for arange of e'sand
average over the attractor or over arandom sampling of pointson it.

We now have two statistics Qc0 and Qc1 that we can use to test for the Sauer-Y orke
criteriafor filtered chaotic data. We will mostly concentrate on the continuity statistic,
since the differentiability statistic followsit very closely in thiscase. Wegiveall eandd
valuesin units of the standard deviation of the reconstructed attractor, so that, for
examplee = 1.0 isan e set with radius of one standard deviation. For all of our studies so
far this seemsto be a good normalization for set sizes.

[ll. Application to LTI and acausal filtered data

The two filters applied to the datawere a LTI filter and an acausal filter. The LTI

filter givesanew quantity zasin Eqg. (1). Thisisthe same as convolving x1 with an

exponential in time (with —h as the exponent) or multiplying the Fourier transform of x;
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by 1/(iw +h). The acausal filter has a Fourier transform that is similar to the LTI filter,
excent it is real and causes no phase shifts; 1/ Jw? +h? T6l.

0™
k — — — - Kaplan Yok dimension
! LTI dimension
!

23 Acausal dimension

2 < G g 10 12 14 16

T (filter paratneter)

Figure 1. Nearest neighbor dimension of LTI and acausal filtered Lorenz attractorsas a

function of filter parameter h, along with the Kaplan-Y orke dimension estimate for the

LTI filtered case.
We applied these filters to time series from two chaotic systems. Thefirst wasa

Lorenz system with parameters s=10, b=8/3, and r = 60 which was integrated for 128,000

points using a 4th order Runge-K utta routine with a0.02 time step. The filtered x
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component was used to reconstruct an attractor in six-dimensional space. Varioustime
series lengths were used from 4000 to 128000 points. The second system was a chaotic
Henon system with parametersa = 1.4 and b = 0.3. Thefiltered Henon x component was
used in reconstructionsin six dimensional space. We used six dimensions to insure
complete unfolding of the attractors. Similar results were obtained for five-dimensional
reconstructions and eight-dimensional reconstructions.

Fig. 1 shows the nearest-neighbor dimension [15] (which is the same as the
information dimension) for the filtered Lorenz data as afunction of filter parameter h.

We can analyze the LTI results using Kaplan Y orke formulafor the fractal dimension

DL of anattractor : D =j+a | K|l j+1l, wherel \ are the Lyapunov exponents and j isthe
k=1

largest index for which the sum is positive. According to this formulathe dimension of
the LTI filtered data should begin to increase when h goes below 15.085 (the smallest
exponent for the Lorenz system). And at h £ 1.414 we should see aleveling off in the
increase in the dimension. The values of D for the Lorenz system are plotted in Fig. 1.
They match the observed trend in the filtered attractor dimension nicely.

The problem is that the Kaplan-Y orke formula cannot explain the dimension increase
observed from the use of the acausal filter. That filter (see Fig. 1) causes somewhat
smaller increases in dimension.

We can begin to get some feel for how the filtering process affects the attractor by
examining the continuity of the functional relation between the original, reconstructed
attractor and the reconstructed, filtered attractor. Fig. 2 shows the results of calculating
the continuity statistic QcO0 vs. the filtering parameter h for this function at a particular e
value. We choose e =0.06 which is asmall set size on the attractor, about 0.1% of the
attractor points arein such a set on average (see Fig. 2 inset for an example). We see
from Fig. 2 that as we increase the amount of filtering, the continuity for the function

between the original attractor and the filtered attractor drops off, with the acausal
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continuity dropping more slowly in agreement with the smaller increase in dimension in

the acausal, filtered attractors.

0.9

Acausal

0.8 —

0.6 —

) 8. (E)

0.4 —

0.2 —

Figure 2. Continuity statistic vs. filter parameter for LTI and acausal filtered Lorenz
attractors. Theinset shows atwo-dimensional projection of the attractor and thee size

used to calculate Qc0 in the figure.

Many times a drop-off in the Qc0 statistic is caused by the fact that as we decrease e

we decrease the number of points that can be found at smaller resolutions and the statistic
becomes the victim of the finite amount of data. To test this we plotted Qc0 as a function

of e for acausal filtering for various time series lengths for two filtering parameters, one
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h =16.0 where we are sure we should get good continuity and the other at h =0.113

where the filtering is extreme.

14

04
.
T
fi-

slope=0.75

0.01-]

g 2 3 4 56789
0.01 0.1

Figure 3. Continuity statistic vs. e for various length filtered Lorenz time series for the
acausal filter. The dotted lines are for mild filtering with no dimension increase (h =
1.6). The solid lines are for severe filtering with dimension increase (h = 0.113). The
straight of slope 0.78 isfrom aleast squares fit to the log-log plots for severe filtering
using the time series with 32000, 64000, and 128000 points.
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Fig. 3 showsthese plots. For the mildly filtered case we see two features. Oneisthe
continuity statistic is nearly 1.0 down to very small e sizes and the other is that the
continuity drop-off at small e can be reversed by ssmply taking longer time series.

For the heavily filtered time series we see that the features of the mildly filtered case
do not show up. The continuity statistic is small even for larger e sizes and it does not
markedly improve with increasing time series length. In fact in going from 4000 to
128000 points we see very little improvement. From 32000 points and higher thereis
almost no improvement. The statistic saturates as a function of the amount of data;
adding data does not improveit. Thisisasign that there are true discontinuitiesin the
function mapping the original attractor to the filtered attractor [1].

Fig. 3 gives us a clueinto the nature of those discontinuities. In thislog-log plot we
see that the continuity statistic is nearly a straight line for a decade of e sizes. The
continuity null hypothesisis such that QcOisnearly 1 or O at each point on the
reconstructed attractor [1]. This meansthat QcO (e) isagood approximation to the
fraction or density of points on the attractor that have discontinuities of sizee or greater.
The linear behavior in the plot implies that the density of discontinuitiesr cO should scale
as rcO=e & witha » 0.78inFig. 3.

We can gain some more insight by plotting Q0 as a function of the number of point
in each e set, ne. Thisgetsrid of any effects associated with specific set-size scaling.
Theresults are shown in Fig. 4 for the Lorenz system for the same filtering asin Fig. 3.
We see we also get a scaling relation (thisis alog-log plot) in which we can write Qc0 ~

nz . We can relate thisto the QcO ~ e @ scaling above asfollows. We expect the

number of pointsin each set, ne, to scalease D, where D isthe fractal dimension of the

attractor. Then from our plots we would deduce QcO ~ ng =ebD=ea orthatbD =

a . Fromthe plotswe haveb = 0.38 and a = 0.78. The fractal dimension D of the

Lorenz attractor for our parametersis sightly greater than 2.0. Hence, the scaling
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Figure 4. Plot of Qc0 vs. newith averagefit to all curves showing ascaling relation

between Qc0 and ne.

exponents are consistently related. The scaling exponents meanings are that if we choose
aeuclidean measure for spatial volume (the € set), we will see one scaling of the density

of discontinuities given by a. If we choose to use the fractal measure of the attractor as a

measure of the volume on which the discontinuities appear we will see another scaling

exponent b given by a /D. That isthe change in scaling exponents ssimply reflects the

change in volume measures as we would expect. With either measure the conclusion

13. 10:11 AM, January 28, 1998



L. Pecoraand , Naval Research Laboratory
would be that the set of discontinuitiesis dense on the attractor and the size of the
discontinuities decreases as € decreases.

We see similar behavior in LTI filtered time series. Typically scaling exponents for
the LTI statistics are larger than for the acausal statistics.

In all our studiesthe differentiability statistic Qc1 follows the discontinuity statistic
QcO rather closely implying the loss of differentiability is resulting from the |oss of
continuity, although this does not have to be the case. It may be that the mapping from
unfiltered to filtered is actually becoming nondifferentiable with decreasing h , but
remaining continuous. In this case the function would fluctuate wildly analogous to the
Welirstrass function, for example. Therefore, if the nondifferentiability is"severe" the
function will appear discontinuous at lower resolution (larger e sizes). We may not have
the data quantity and precision to go to small-enough e 's to see this behavior. However,
the mechanism for dimension increase given below will not, in the first approximation, be
affected by thisissue.

The behavior of filtered Henon time seriesis very similar to the Lorenz case. For the
Henon map the LTI filter causes alarger increase in fractal dimension than the acausal
filter [1]. The LTI filter dimension increases begin at "Kaplan-Y orke value" of h = 1.58
and proceeds to the "breakpoint” value h = 0.417 where it levels off asin the Lorenz
case. Similarly, for the heavily filtered time series both the LTI and acausal attractors are
related to the original attractor by afunction that has a continuity statistic QcO that
saturates with time series length and has a power-law scaling.

This scaling behavior is similar to that found for discontinuities in the devil's staircase
[16]. Thisimpliesthat the discontinuities (or apparent discontinuities due to
nondifferentiability) caused by extreme filtering are dense, in some way, on the original
attractor. That is, these are not isolated discontinuities, but at any e we will find

discontinuities "almost everywhere." A set of such discontinuities may increase the
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fractal dimension of the original attractor. The questions now are, what in the filtering
process causes the discontinuities and how can we view this process?

IV. A geometric interpretation of filtering

We answer the previous questions by starting with the second one. We view the
action of afilter by augmenting the phase-space reconstruction (or the original attractor's
phase space, if we have accessto it) by a component z which will represent the filtered
time series. Likewise, we augment the points on the attractor with another component,
the values z, resulting from application of the filter. For example, in the discrete case we
can define

% = Xt Xyt aX o Tt ©)
asthe action of an LTI filter on atime series (with properly chosen aj values). In
general, Eq. (2) shows the relationship of the filtered time series z(t) to the phase space
point x(t). The main point isthat each point on the attractor is associated with afiltered
value. Then we consider the augmented Vectors (Xn, Xn-1, ..., Xn-(d-1), Zn) ind+1
dimensional space, where d was the original embedding dimension.

Fig. 5 showsthis for the Henon map. In Fig. 5(a) we have LTI filtering below the
level necessary to increase the dimension of the attractor. We see there a curvilinear
version in three dimensions (x, y, ) of the original attractor as plotted in the (x, y) plane.
The projection of 4(a) onto the (X, y) plane still gives the original Henon attractor, of
course, but the object we are reconstructing from the filtered time series actually comes
from the one in three-dimensional (3D) space. The f in the figure represents the mapping
from the original unfiltered attractor to the new filtered attractor. Heref is continuous —
points nearby in the (x, y) plane are also nearby in the three-dimensional object. The
mapping is also smooth and therefore C1. The dimension of the new object remains the
same as the original Henon attractor. In this figure we can embed the filtered attractor in

three dimensions because we have al three components. In our time-delay
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reconstructions thisis not the case and we must go to 5 or 6 dimensions to insure proper

embedding.

Figure 5. (a) Plot of the Henon attractor in the (x,y) plane and the filtered values z
related to each Henon (x,y) point for acausal filtering below the threshold for dimension

increase (h = 1.6).

In Fig. 5(b) we see asimilar plot for the heavily filtered case. Now rather than a
smooth object in 3D we see that the Henon attractor has been "smeared out" into the z-
direction. InFig. 5(c) we view the 3D object of Fig. 5(b) from above and see that it still
projects down to the original Henon attractor as we would expect from the construction of

our new augmented phase space, but no longer do points nearby in the (x, y) plane map to
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points nearby in the 3D object. The mapping f is discontinuous — nearby points typically
map to points that are distant in the 3D space. The "layers" of the Henon attractor which
follow the folding unstable manifold [17] are smeared up into the z-direction like curved
sheets. Thisisthe discontinuity between the original attractor and the filtered attractor
that our statistic QcO0 is detecting.

X

Figure 5. (b) Plot of the Henon attractor in the (x,y) plane and the filtered values z
related to each Henon (x,y) point for acausal filtering above the threshold for dimension

increase (h = 0.2).
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The power-law scaling of Qc0 strongly suggests that the discontinuities are "dense.”
Thus, the new 3D object will, in general, have alarger dimension than the Henon
attractor. When we reconstruct using filtered time series we are actually sampling the 3D
object and not the Henon attractor. Hence, our filtered attractor will have the increased

dimension of the 3D object.

Figure 5. (c) Same as (b) but from a higher z viewpoint to show that the augmented

phase-space object projects down onto the original Henon map.
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Now that we have away to view the filtering, we can heuristically explain where the
discontinuities come from. Consider the application of afilter with along tail into the
past (e.g. LTI filter). Apply thefilter at two points, one starting on an unstable periodic
orbit (UPO) and the other starting near the UPO on the Henon attractor. Each point will
have afilter value z associated with it. We show the scenario in Fig. 6 with a period-2
UPO. The point on the UPO will oscillate back and forth between the two circles. The
point nearby at point-0 will drift away from the UPO as we move backward in time. This
is a consegquence of the negative Lyapunov exponent which acts to make points diverge
in reverse time. Hence, the nearby point will sample different areas of the attractor than
the point on the period-2 UPO. A long-tailed filter will be a weighted average of these
points. If thetail islong enough the filter values will be vastly different, even though
both trgjectories started very close at point-0. Hence, nearby points (at point-0) will map
to different filter (z) values —we have may have a discontinuity.

We note that this does not prove that we truly have discontinuities. Itisonly a
heuristic argument to help explain what the continuity statistic suggests. It can also be
argued that the function from the attractor to the z valuesis actually non-differentiable
[18]. To seethiswe can use Eq. (2) withan LTI filter. Inthis case the integration over
timeisfrom =¥ to 0 and the filter kernel R (t) isjust eNt. Then the difference between

filter values Dz coming from nearby points x; and X2 is given rougly by

DZ:(‘; " (F ] F_ [x;])dt »(‘5) d'DF _, >Dxdt
’ ¥ : (4)

where Dx=x1—x2. Inorder to get an estimate of the magnitude of Dz we might be tempted
to substitue e tfor DF _¢ , where| isthe smallest (negative) eigenvalue and conclude
that when || | > |h| Eg. (4) diverges and no matter how small Dx iswe will always have a
finite Dz ( adiscontinuity). But we must remember that the attractor is compact (finitein
size) and a better substitution for DF _y would be min { e t, 1}, where we assume the

attractor sizeisof order 1. Then, when t® —¥, we have a"bound" on Dz of 1+ |Dx|.
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This argues (but does not prove) that we are not really seeing discontinuities, but rather
that the function relating z to x is non-differentiable.

u_.;ﬂ:j:r-::____ Foint -2
/J\H"H.,_‘ Point -4
e e
. . e
0.2 Foint O e e
7] S, Point -3 7
"-.__“-.x___ ""'.':“:E‘h:.._‘
x"'._ "7:_..“ "‘."?!__tt}
ow -"‘~}a;l|
"q.\ "'-\,.‘f u
1"‘..'?._ H:-.‘:I.
: ) ]
Point -5 L '

e o
_DE_ L B ._.:ﬁ | —

T o FPoint -1
.-'-""'.- AR"'I"P.
T Foint -6
[ [ [ [ [
-1.0 -0.5 00 0.5 1.0

Figure 6. The trgectoriesin reverse time for two points on the Henon attractor, one
on the period-2 UPO and another starting close by. Because the one close by divergesit
covers other areas of the attractor not covered by the UPO points and therefore gives a

different filtered value z
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Why do the continuity statistics remain low? Apparently we are not sampling at
enough points to see continuity. If we imagine a non-differentiable function (e.g. the
Welrstrass function), we see large and rapid oscillations. If thisis not sampled densely
enough, we will appear to have a discontinuous function. Thisis probably what is
happening in our examples. This does not mean that the continuity statistic is useless.
Either discontinuities or non-differentiabilities can cause dimension increase. The
detection of discontinuities between data sets servesto tell usthat, for any practical
purpose, the relation istruly discontinuous. Thisis the message one can take away from
any statistical result: given the data, for practical purposes, it acts like the statistic saysit
does.

V. Conclusions and discussion

The filtering-dimension-increase scenario we expose above does not depend on the
type of filter, so long as the filter has along enough tail that drops off more slowly than
the smallest Lyapunov exponent into the past and/or the largest Lyapunov exponent into
the future. All filters of infinite time extent can potentially cause dimension increase.

Below we offer what we believe are some interesting conjectures regarding the
relationships between chaotic attractors, filters, and UPO's.

We note that others (e.g. Rosenstein et al [19]) have seen a "thickening" of attractors
after the application of LTI filters. For example, the Lorenz attractor appears to bulge out
transverse to its usual planes of oscillation around the unstable fixed points[19]. We
would conjecture that this is a manifestation of the effect we see in the Henon attractor,
Figs. 5.

Since UPO's appear to be involved we might expect isolated discontinuities to begin
to appear as we change the filter parameter h . Thisis because each UPO hasits own
Lyapunov exponent. The Lyapunov exponents of the attractor are an ergodic average of
all the UPO Lyapunov exponents. Hence, we may see discontinuities associated with the

more unstable UPO's first, then get a dense set of discontinuities only when we reach
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some threshold dependent on the attractor's Lyapunov exponents. The scaling we seein
the QcO statistic should be predicatable from the density of UPO's of various periods.
We feel that rigorous proofs of many of our conjectures and scenarios may be
possible, but we have not been able to accomplish that at this time.
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