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Abstract

We show that one can use recently introduced statistics for continuity and differentiability

to show the effect of filters of infinite extent in time on a chaotic time series.  The

statistics point to a discontinuous or nondifferentiable function between the unfiltered

attractor and the filtered attractor as the origin of attractor dimension increase when the

filtering is severe.   The density of discontinuities as a function of resolution follows a

scaling relation.  We present direct visualization of this effect in the filtered Henon

attractor where the origin of dimension increase becomes obvious.
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I. Introduction

In this paper we show that recently devised statistics for testing continuity and

differentiability [1] can be useful in testing for damage to a chaotic time series from the

application of a filter.  We first outline past explorations into the filtering of chaotic time

series.  We then introduce the statistics and show their application to filtered data sets.

The results suggest a way to view filtering of a time series which explains why any filter

of infinite extent in time has potential to increase the dimension of a chaotic attractor.

Filtering of time-series data is common-place in signal processing, but filtering of

data from a chaotic system can lead to a time-series that does not convey the correct

information about the original system.  This was first demonstrated by Badii et al [2]

using a low-pass dynamical filter, commonly called a linear, time-invariant filter (LTI).

The LTI filter is given by
dz

dt
= −ηz + x1

, (1)

where z is the result of filtering and x1 is a component of the dynamical system x•  = F(x),

i.e. x1generates the time-series that is filtered by weighted averaging into the past.

Badii et al showed that when the time series is highly filtered (small η  values) the

attractor reconstructed from the filtered time series z has a dimension that is larger than

that of the original attractor.  They went on to show that because of the dynamic nature of

the filter the dimension increase could be correlated with an increase in the Kaplan-York

dimension [3].  Later Badii et al showed that one can also view the dimension increase as

a phase transition, using a thermodynamics approach to dimensions [4].

Chennaoui et al showed a mechanism for dimension increase for the particular case of

an LTI filter acting on the logistic map [5].  For the logistic map parameter value of r=4,

they obtained analytic results.  Their work showed that in this particular case the filter

induces self-similarity in the density of points in the two-dimensional space of time-series

points and filtered values.
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Other work by Mitschke [6] showed that acausal filters (which average symmetrically

into the future as well as the past) may do little or no damage to some chaotic time series

even for the highly filtered case.  Mitschke suggested that the phase-preserving nature of

the acausal filter kept the dimensions invariant under the filtering.  This phase criteria

remains unclear.

Isabelle [7], basing his conclusions on the Lipshitz condition, suggested that problems

would ensue with LTI filters when the filter parameter η exceeded the minimum

Lyapunov exponent of the system.  This is essentially correct and is related to the

Kaplan-Yorke dimension.  We will show that this can occur for filters other than LTI

filters.

Finally, Broomhead et al [8] showed that filters of finite extent in time, for certain

cases called finite impulse response (FIR) filters, would, in principle, induce a

diffeomorphism between the original attractor reconstructed from the signal (x1) and that

reconstructed from the filtered signal (z).  The LTI filters like Eq. (1) and Mitschke's

acausal filter are infinite in extent or infinite impulse response (IIR) filters and are not

necessarily safe to use.  Broomhead et al did point out that in practice FIR filters with a

very long time window may act like IIR filters and for finite precision data cause

problems, too.

In all the forgoing research what becomes clear is the need for a criterion to help

determine when a filter is safe to apply to a data set or use during data collection in an

experiment.  The Kaplan-Yorke formula only works for filters that are dynamical

systems.  Recently Sauer and Yorke have given such a criteria [9]. They provide a

theorem that shows that when the filtering induces a map from the unfiltered attractor to

the filtered attractor which is continuously differentiable (C1) the dimension quantities

associated with the measure on the attractor (e.g. information or correlation dimensions)

are preserved.
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The theorem implies a need for a numerical algorithm to test for the C1 condition in

filtered data.  Below we show how tests for continuity and differentiability we have

devised fulfill this need.  The tests also provide statistics that suggest a very interesting

scaling behavior in highly filtered data that is not obvious from dimension measurements.

This leads to a clear geometric picture of the action of a filter on a chaotic attractor and an

explanation for dimension increase.

II. Statistics for Continuity and Differentiability

The action of any convolutional filter on a time series from a dynamical system can

be written as

z(t) = R(t − t' ) x1(t' )dt' = R(t −t' )(Φt' − t[x(t)])1 dt'∫∫ , (2)

where Φ is the flow on the system's phase space and R(t) is the filter.  The action of the

LTI filter (Eq. (1)) can also be written this way.  It is not hard to show [1] that this

induces a point-to-point mapping f from the attractor reconstructed from the original time

series to that reconstructed from the filtered time series:  z(t) = f(x(t)), where z is the time

delay vector generated from z(t), z(t+∆t),... and x is the time delay vector generated from

x1(t), x1(t+∆t),... , etc.  The Sauer-Yorke theorem states that we must show that f is a C1

function.  We next show how to do this with time-series data.

Our goal is to develop simple statistics that are (1) clearly connected to the one

mathematical property they measure and (2) have a separate statistical hypothesis

associated with them.  Number (1) criteria guarantees that we are sure what property we

are testing.  Number (2) guarantees we know what we are using as a gauge of that

property.  These goals are, in a sense, reversed from what one usually finds in the

literature where tests which are an amalgam of mathematical properties and numerical

algorithms are used to test for attributes which are derived, for example, determinism

[10,11], general synchronization [12], and correct embedding dimension [13,14].

Although these numerical tests can be useful, it is not always clear what mathematical

property is being tested.
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We are testing for continuity (C0) and differentiability (C1).  We give two separate

statistical tests, one for each property.

A test for continuity must start with the definition of continuity:  the function f is

continuous at a point x0  if ∀ ε>0 ∃ δ>0 such that || x–x0||<δ ⇒ ||f(x)–f(x0)||<ε..  In

simpler terms if we restrict ourselves to some local region around f(x0), then there must

exist a local region around x0 all of whose points are mapped into the  f(x0) region.  From

this definition we can generate an algorithm to apply to time-series reconstructions.

Our reconstructions are matched in a "one-to-one" fashion (which we call f) in that

for every point x we have a corresponding point z; however, we do not know how points

in local neighborhoods are paired.  We choose an ε -sized set around a fiducial point z0,

we also choose a δ -sized set around it's preimage x0.  We check whether all the points in

the δ set map into the ε  set.  If not, we reduce δ and try again.  We continue until we run

out of points or all points from a small-enough δ set fall in the ε  set. We count the

number of points in the ε  set (nε) and the δ set (nδ).  We do not include the fiducial

points z0 or x0, since they are present by construction.  Generally nε ≥ nδ, since points

other than those near x0 can also get mapped to the ε  set, but this does not affect

continuity.

We now choose the null hypothesis which helps us generate a probability that one

should find nε  and nδ  points in such an arrangement.  Many null hypotheses are

possible.  We choose the simplest, namely, that placements of the points on the x and z

attractors are independent of each other.  This null hypothesis is not trivial.  It is typical

of what one would like to disprove early on in any attractor analysis, namely  that the

data have a relation to each other.  We will see that it can show much more.

Given the null hypothesis we approximate the probability of a point from the δ set

falling at random in the ε  set as p = nε /N, where N is the total number of points on the

attractor.  Then the probability that  nδ points will fall in the ε  set is p
nδ  .  We obtain a

likelihood that this will happen by taking the ratio of this probability to the probability for
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the most likely event, pbinmax.  The latter is just the maximum of the binomial distribution

for nδ points given probability p for each individual event.  We see that p
nδ  is simply the

"tail-end" of the binomial distribution.  The maximum generally will occur for some

intermediate number of δ points, say m (<nδ ), falling in the ε  set.  If p
nδ « pbinmax, then

the null hypothesis is not likely and can be rejected.

We define the continuity statistic as ΘC0 = 1 – p
nδ /pbinmax.  When ΘC0 ≈ 1 we can

confidently reject the null hypothesis.  The points in the ε  set are behaving as though

they are generated by a continuous function on the δ   set.  When ΘC0 ≈ 0 we cannot

reject the null hypothesis and the points are behaving as though they are independent.

Note that if we run out of points (nδ =0), then we usually take the logical position that we

cannot reject the null hypothesis and set ΘC0 = 0.  ΘC0  will depend on ε  , the resolution,

and we will examine the statistic for a range of ε  's.  To get a global estimate of the

continuity of f on the attractor we average ΘC0 over the entire attractor or over a random

sampling of points on it.  We present those averages here.

The differentiability statistic is generated in the same vein as the continuity statistic.

We start with the mathematical definition of a derivative and apply it locally to the two

reconstructions.  The generation of the linear map that approximates the derivative and

the likelihood estimate associated with it are more complex than for continuity.  We show

the details in our longer paper [1].  We only outline the differentiability statistic here.

The definition of a derivative at a point x0 is that a linear operator A  exists such that

∀ ε>0 ∃ δ>0 for which || x–x0||<δ ⇒ ||f(x0) + A(x–x0) –f(x)|| < ε|| x–x0||.  This means that

there is a linear map that approximates the function at nearby points with an error in the

approximation that is proportional to the distance between those points.  Note that ε

serves a purpose here different from continuity.  Here it bounds the error in a linear

mapping; it does not signify a distance.

The algorithm that we generate from this definition is to first choose an ε  (error

bound) and a δ .  Then we find all the points in the local δ set {xi} and their z
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counterparts {zi}.  We approximate the linear operator A as the least squares solution of

the linear equations  A(xi–x0) = (zi–z0).  The solution is accomplished by singular value

decomposition (SVD) [1]. The least-squares approach appears to be the best since it

minimizes the errors in approximation which is just what ε  is supposed to bound.  We

check if || zi–z0–A(xi–x0) || < ε   || x–x0||.   If not, we decrease δ  and try again with fewer,

but nearer points.  We continue this until we have success or we run out of points.

We choose the null hypothesis that the two sets of vectors {xi} and  {zi} have zero

correlation.  We show [1] that this generates a likelihood that any two such sets will give

the operator A "by accident" as e
–

1

2
(nδ –rx)(nδ –rz )r2d

, where r2 is the usual multivariate

statistical correlation between {xi} and {zi}, d=min(rx, rz), and rx, rz are the ranks of the

x and z spaces that come out of the SVD [1].  This is an asymptotic formula.  The

differentiability statistic ΘC1  is given by one minus this likelihood.  When  ΘC1 ≈ 1 we

can reject the possibility that the points are accidentally related by a linear operator, a

derivative.  When  ΘC1 ≈ 0, we cannot reject the null hypothesis.  As before, when we

shrink δ  so small that no points other than x0 remain, we set ΘC1 =0.   Analogous to

ΘC0, the statistic ΘC1 depends on ε .   We typically calculate ΘC1 for a range of ε 's and

average over the attractor or over a random sampling of points on it.

We now have two statistics ΘC0 and ΘC1 that we can use to test for the Sauer-Yorke

criteria for filtered chaotic data.  We will mostly concentrate on the continuity statistic,

since the differentiability statistic follows it very closely in this case.  We give all ε and δ

values in units of the standard deviation of the reconstructed attractor, so that, for

example ε = 1.0 is an ε set with radius of one standard deviation.  For all of our studies so

far this seems to be a good normalization for set sizes.

III. Application to LTI and acausal filtered data

The two filters applied to the data were a LTI filter and an acausal filter.  The LTI

filter gives a new quantity z as in Eq. (1).  This is the same as convolving x1 with an

exponential in time (with –η as the exponent) or multiplying the Fourier transform of x1
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by 1/(iω +η).  The acausal filter has a Fourier transform that is similar to the LTI filter,

except it is real and causes no phase shifts:  1/ ω2 + η2  [6].

Figure 1.  Nearest neighbor dimension of LTI and acausal filtered Lorenz attractors as a

function of filter parameter η, along with the Kaplan-Yorke dimension estimate for the

LTI filtered case.

We applied these filters to time series from two chaotic systems.  The first was a

Lorenz system with parameters σ=10, b=8/3, and ρ= 60 which was integrated for 128,000

points using a 4th order Runge-Kutta routine with a 0.02 time step.  The filtered x
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component was used to reconstruct an attractor in six-dimensional space.  Various time

series lengths were used from 4000 to 128000 points.  The second system was a chaotic

Henon system with parameters a = 1.4 and b = 0.3 .  The filtered Henon x component was

used in reconstructions in six dimensional space.   We used six dimensions to insure

complete unfolding of the attractors.  Similar results were obtained for five-dimensional

reconstructions and eight-dimensional reconstructions.

Fig. 1 shows the nearest-neighbor dimension [15] (which is the same as the

information dimension) for the filtered Lorenz data as a function of filter parameter η.

We can analyze the LTI results using Kaplan Yorke formula for the fractal dimension

DL  of an attractor : DL = j+ ∑
k=1

j
λk/|λj+1|, whereλk are the Lyapunov exponents and j is the

largest index for which the sum is positive.  According to this formula the dimension of

the LTI filtered data should begin to increase when η goes below 15.085 (the smallest

exponent for the Lorenz system).  And at η ≤ 1.414 we should see a leveling off in the

increase in the dimension.  The values of DL  for the Lorenz system are plotted in Fig. 1.

They match the observed trend in the filtered attractor dimension nicely.

The problem is that the Kaplan-Yorke formula cannot explain the dimension increase

observed from the use of the acausal filter.  That filter (see Fig. 1) causes somewhat

smaller increases in dimension.

We can begin to get some feel for how the filtering process affects the attractor by

examining the continuity of the functional relation between the original, reconstructed

attractor and the reconstructed, filtered attractor.  Fig. 2 shows the results of calculating

the continuity statistic ΘC0 vs. the filtering parameter η  for this function at a particular ε

value.  We choose ε =0.06 which is a small set size on the attractor, about 0.1% of the

attractor points are in such a set on average (see Fig. 2 inset for an example).  We see

from Fig. 2 that as we increase the amount of filtering, the continuity for the function

between the original attractor and the filtered attractor drops off, with the acausal
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continuity dropping more slowly in agreement with the smaller increase in dimension in

the acausal, filtered attractors.

Figure 2.  Continuity statistic vs. filter parameter for LTI and acausal filtered Lorenz

attractors.  The inset shows a two-dimensional projection of the attractor and the ε  size

used to calculate ΘC0 in the figure.

Many times a drop-off in the ΘC0 statistic is caused by the fact that as we decrease ε

we decrease the number of points that can be found at smaller resolutions and the statistic

becomes the victim of the finite amount of data.  To test this we plotted ΘC0 as a function

of ε  for acausal filtering for various time series lengths for two filtering parameters, one
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η =16.0 where we are sure we should get good continuity and the other at η =0.113

where the filtering is extreme.

Figure 3.  Continuity statistic vs. ε  for various length filtered Lorenz time series for the

acausal filter.  The dotted lines are for mild filtering with no dimension increase (η =

1.6).  The solid lines are for severe filtering with dimension increase (η = 0.113).  The

straight of slope 0.78 is from a least squares fit to the log-log plots for severe filtering

using the time series with 32000, 64000, and 128000 points.
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Fig. 3 shows these plots.  For the mildly filtered case we see two features.  One is the

continuity statistic is nearly 1.0 down to very small ε sizes and the other is that the

continuity drop-off at small ε can be reversed by simply taking longer time series.

For the heavily filtered time series we see that the features of the mildly filtered case

do not show up.  The continuity statistic is small even for larger ε sizes and it does not

markedly improve with increasing time series length.  In fact in going from 4000 to

128000 points we see very little improvement.   From 32000 points and higher there is

almost no improvement.  The statistic saturates as a function of the amount of data;

adding data does not improve it.  This is a sign that there are true discontinuities in the

function mapping the original attractor to the filtered attractor [1].

Fig. 3 gives us a clue into the nature of those discontinuities.  In this log-log plot we

see that the continuity statistic is nearly a straight line for a decade of ε sizes.  The

continuity null hypothesis is such that ΘC0 is nearly 1 or 0 at each point on the

reconstructed attractor [1].  This means that ΘC0 (ε) is a good approximation to the

fraction or density of points on the attractor that have discontinuities of size ε  or greater.

The linear behavior in the plot implies that the density of discontinuities ρC0 should scale

as  ρC0 =ε  α, with α ≈ 0.78 in Fig. 3.

We can gain some more insight by plotting ΘC0 as a function of the number of point

in each ε set, nε.  This gets rid of any effects associated with specific set-size scaling.

The results are shown in Fig. 4 for the Lorenz system for the same filtering as in Fig. 3.

We see we also get a scaling relation (this is a log-log plot) in which we can write ΘC0 ~

n
β
ε .  We can relate this to the ΘC0 ~ ε  α scaling above as follows.  We expect the

number of points in each set, nε., to scale as ε  D, where D is the fractal dimension of the

attractor.  Then from our plots we would deduce ΘC0 ~ n
β
ε  = ε  β D = ε  α , or that β D =

α .  From the plots we have β = 0.38 and α = 0.78.  The fractal dimension D of the

Lorenz attractor for our parameters is slightly greater than 2.0.  Hence, the scaling
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Figure 4.  Plot of ΘC0 vs. nε with average fit to all curves showing a scaling relation

between ΘC0 and nε.

exponents are consistently related.  The scaling exponents' meanings are that if we choose

a euclidean measure for spatial volume (the ε set), we will see one scaling of the density

of discontinuities given by α.  If we choose to use the fractal measure of the attractor as a

measure of the volume on which the discontinuities appear we will see another scaling

exponent β given by α /D.   That is the change in scaling exponents simply reflects the

change in volume measures as we would expect.  With either measure the conclusion
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would be that the set of discontinuities is dense on the attractor and the size of the

discontinuities decreases as ε  decreases.

We see similar behavior in LTI filtered time series.  Typically scaling exponents for

the LTI statistics are larger than for the acausal statistics.

In all our studies the differentiability statistic ΘC1 follows the discontinuity statistic

ΘC0 rather closely implying the loss of differentiability is resulting from the loss of

continuity, although this does not have to be the case.  It may be that the mapping from

unfiltered to filtered is actually becoming nondifferentiable with decreasing η , but

remaining continuous.  In this case the function would fluctuate wildly analogous to the

Weirstrass function, for example.  Therefore, if the nondifferentiability is "severe" the

function will appear discontinuous at lower resolution (larger ε  sizes).  We may not have

the data quantity and precision to go to small-enough ε 's to see this behavior.   However,

the mechanism for dimension increase given below will not, in the first approximation, be

affected by this issue.

The behavior of filtered Henon time series is very similar to the Lorenz case.  For the

Henon map the LTI filter causes a larger increase in fractal dimension than the acausal

filter [1].  The LTI filter dimension increases begin at "Kaplan-Yorke value" of η = 1.58

and proceeds to the "breakpoint" value η = 0.417 where it levels off as in the Lorenz

case. Similarly, for the heavily filtered time series both the LTI and acausal attractors are

related to the original attractor by a function that has a continuity statistic ΘC0 that

saturates with time series length and has a power-law scaling.

This scaling behavior is similar to that found for discontinuities in the devil's staircase

[16].  This implies that the discontinuities (or apparent discontinuities due to

nondifferentiability) caused by extreme filtering are dense, in some way, on the original

attractor.  That is, these are not isolated discontinuities, but at any ε  we will find

discontinuities "almost everywhere."  A set of such discontinuities may increase the
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fractal dimension of the original attractor.  The questions now are, what in the filtering

process causes the discontinuities and how can we view this process?

IV. A geometric interpretation of filtering

We answer the previous questions by starting with the second one.   We view the

action of a filter by augmenting the phase-space reconstruction (or the original attractor's

phase space, if we have access to it) by a component z which will represent the filtered

time series.  Likewise, we augment the points on the attractor with another component,

the values zn resulting from application of the filter.  For example, in the discrete case we

can define

zn = a0xn + a1xn−1 + a2xn−2 + ... (3)

as the action of an LTI filter on a time series (with properly chosen ai values).   In

general, Eq. (2) shows the relationship of the filtered time series z(t) to the phase space

point x(t).  The main point is that each point on the attractor is associated with a filtered

value.  Then we consider the augmented vectors (xn, xn-1, ..., xn-(d-1), zn) in d+1

dimensional space, where d was the original embedding dimension.

Fig. 5 shows this for the Henon map.  In Fig. 5(a) we have LTI filtering below the

level necessary to increase the dimension of the attractor.  We see there a curvilinear

version in three dimensions (x, y, z) of the original attractor as plotted in the (x, y) plane.

The projection of 4(a) onto the (x, y) plane still gives the original Henon attractor, of

course, but the object we are reconstructing from the filtered time series actually comes

from the one in three-dimensional (3D) space.  The f in the figure represents the mapping

from the original unfiltered attractor to the new filtered attractor.  Here f is continuous  –

points nearby in the (x, y) plane are also nearby in the three-dimensional object.  The

mapping is also smooth and therefore C1.  The dimension of the new object remains the

same as the original Henon attractor.  In this figure we can embed the filtered attractor in

three dimensions because we have all three components.  In our time-delay

15. 10:11 AM,  January 28, 1998



L. Pecora and , Naval Research Laboratory

reconstructions this is not the case and we must go to 5 or 6 dimensions to insure proper

embedding.

Figure 5.  (a) Plot of the Henon attractor in the (x,y) plane and the filtered values z

related to each Henon (x,y) point for acausal filtering below the threshold for dimension

increase (η = 1.6).

In Fig. 5(b) we see a similar plot for the heavily filtered case.  Now rather than a

smooth object in 3D we see that the Henon attractor has been "smeared out" into the z-

direction.  In Fig. 5(c) we view the 3D object of Fig. 5(b) from above and see that it still

projects down to the original Henon attractor as we would expect from the construction of

our new augmented phase space, but no longer do points nearby in the (x, y) plane map to
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points nearby in the 3D object.  The mapping f is discontinuous – nearby points typically

map to points that are distant in the 3D space.  The "layers" of the Henon attractor which

follow the folding unstable manifold [17] are smeared up into the z-direction like curved

sheets.  This is the discontinuity between the original attractor and the filtered attractor

that our statistic ΘC0 is detecting.

Figure 5.  (b) Plot of the Henon attractor in the (x,y) plane and the filtered values z

related to each Henon (x,y) point for acausal filtering above the threshold for dimension

increase (η = 0.2).
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The power-law scaling of ΘC0  strongly suggests that the discontinuities are "dense."

Thus, the new 3D object will, in general, have a larger dimension than the Henon

attractor.  When we reconstruct using filtered time series we are actually sampling the 3D

object and not the Henon attractor.  Hence, our filtered attractor will have the increased

dimension of the 3D object.

Figure 5.  (c) Same as (b) but from a higher z viewpoint to show that the augmented

phase-space object projects down onto the original Henon map.
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Now that we have a way to view the filtering, we can heuristically explain where the

discontinuities come from.  Consider the application of a filter with a long tail into the

past (e.g. LTI filter).  Apply the filter at two points, one starting on an unstable periodic

orbit (UPO) and the other starting near the UPO on the Henon attractor.  Each point will

have a filter value z associated with it.  We show the scenario in Fig. 6 with a period-2

UPO.  The point on the UPO will oscillate back and forth between the two circles.   The

point nearby at point-0 will drift away from the UPO as we move backward in time.  This

is a consequence of the negative Lyapunov exponent which acts to make points diverge

in reverse time.  Hence, the nearby point will sample different areas of the attractor than

the point on the period-2 UPO.  A long-tailed filter will be a weighted average of these

points.  If the tail is long enough the filter values will be vastly different, even though

both trajectories started very close at point-0.  Hence, nearby points (at point-0) will map

to different filter (z) values – we have may have a discontinuity.

We note that this does not prove that we truly have discontinuities.  It is only a

heuristic argument to help explain what the continuity statistic suggests.  It can also be

argued that the function from the attractor to the z values is actually non-differentiable

[18].  To see this we can use Eq. (2) with an LTI filter.  In this case the integration over

time is from –∞ to 0 and the filter kernel R (t) is just eηt.  Then the difference between

filter values ∆z coming from nearby points x1 and x2 is given rougly by

∆z = eηt (Φ−t[x1]– Φ−t [x2])dt'
–∞

0

∫ ≈ eη tDΦ−t ⋅∆x dt'
–∞

0

∫ , (4)

where ∆x=x1–x2.  In order to get an estimate of the magnitude of ∆z we might be tempted

to substitue e–λt for DΦ–t , where λ is the smallest (negative) eigenvalue and conclude

that when |λ | > |η|  Eq. (4) diverges and no matter how small ∆x is we will always have a

finite ∆z ( a discontinuity).  But we must remember that the attractor is compact (finite in

size) and a better substitution for DΦ–t  would be min { e–λt, 1}, where we assume the

attractor size is of order 1.  Then, when t→–∞,  we have a "bound" on ∆z  of 1. |∆x|.
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This argues (but does not prove) that we are not really seeing discontinuities, but rather

that the function relating z to x is non-differentiable.

Figure 6.  The trajectories in reverse time for two points on the Henon attractor, one

on the period-2 UPO and another starting close by.  Because the one close by diverges it

covers other areas of the attractor  not covered by the UPO points and therefore gives a

different filtered value z.
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Why do the continuity statistics remain low?  Apparently we are not sampling at

enough points to see continuity. If we imagine a non-differentiable function (e.g. the

Weirstrass function), we see large and rapid oscillations.  If this is not sampled densely

enough, we will appear to have a discontinuous function.  This is probably what is

happening in our examples.  This does not mean that the continuity statistic is useless.

Either discontinuities or non-differentiabilities can cause dimension increase.  The

detection of discontinuities between data sets serves to tell us that, for any practical

purpose, the relation is truly discontinuous.  This is the message one can take away from

any statistical result:  given the data, for practical purposes, it acts like the statistic says it

does.

V. Conclusions and discussion

The filtering-dimension-increase scenario we expose above does not depend on the

type of filter, so long as the filter has a long enough tail that drops off more slowly than

the smallest Lyapunov exponent into the past and/or the largest Lyapunov exponent into

the future.  All filters of infinite time extent can potentially cause dimension increase.

Below we offer what we believe are some interesting conjectures regarding the

relationships between chaotic attractors, filters, and UPO's.

We note that others (e.g. Rosenstein et al [19]) have seen a "thickening" of attractors

after the application of LTI filters.  For example, the Lorenz attractor appears to bulge out

transverse to its usual planes of oscillation around the unstable fixed points [19].  We

would conjecture that this is a manifestation of the effect we see in the Henon attractor,

Figs. 5.

Since UPO's appear to be involved we might expect isolated discontinuities to begin

to appear as we change the filter parameter η .  This is because each UPO has its own

Lyapunov exponent.  The Lyapunov exponents of the attractor are an ergodic average of

all the UPO Lyapunov exponents.  Hence, we may see discontinuities associated with the

more unstable UPO's first, then get a dense set of discontinuities only when we reach
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some threshold dependent on the attractor's Lyapunov exponents.   The scaling we see in

the ΘC0 statistic should be predicatable from the density of UPO's of various periods.

We feel that rigorous proofs of many of our conjectures and scenarios may be

possible, but we have not been able to accomplish that at this time.
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