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Abstract

Recent work by Nichols et al [8] and Pecora et al[22] have shown that steady-state dynamic
analysis of structural health exhibits large advantages over transient vibrational analysis.
A geometric representation of system dynamics can be used to extract information about a
structure’s response to sustained excitation. Analysis of various features of the geometric
representation can be used to describe the degree to which the dynamics have been altered
by damage. Here, the feature we employ is the ”continuity test,” a statistical test first
described by Pecora, Carroll and Heagy [14]. This test measures the probability that a
continuous function exists from one geometric object to another. In this implementation,
we formulate a new null hypothesis which serves to make the test less sensitive to noise
in the data than the original test. Using experimental data from an excited three-story
aluminum frame structure with multiple sensors at the joints, we show that the continuity
test can be used not only to detect, but also in some cases to localize damage to particular
joints in the frame structure.

Key Words: Nondestructive structural health evaluation, damage localization, attractor,
lyapunov exponents, continuity test, filtered Lorenz signal



0.1 Introduction

Assessing the functional health of a given
structure is an important concern in many
civilian and military communities. Human
inspection techniques and fixed maintenance
and replacement schedules have been the
historical norm. However, recent advance-
ments in non-destructive evaluation of struc-
tures may make it possible to adapt auto-
mated technologies and in doing so reduce
manpower and costs associated with mainte-
nance.

Currently, major approaches include ul-
trasonic (e.g.[23]), acoustic (e.g. [19]),
wave propagation and thermal imaging [17],
X-ray radiography [20] and eddy-current
methods[1]. These techniques have proven
to be quite useful [5] in particular dam-
age scenarios, but they are primarily local
techniques. Thus, it is necessary to know
that damage has possibly occurred and to
In addi-

tion, many of these techniques are imprac-

also know where to look for it.
tical to apply to large-scale structures. In
the vibration-based techniques, the structure
is excited, and the interrogator then looks
for features of the response that identify and
localize the damage. Traditionally, the fea-
tures have been derived from modal analyses
of the structure such as resonant frequencies
and mode shapes [6, 12, 15, 24, 18].
Recently, the use of deterministic dynam-
ics (see Todd et al [22]) has shown advan-
tages over previous modal analyses in both
sensitivity to low levels of damage and resis-
tance to noise. The experimenter excites the
structure with a chaotic(deterministic) sig-

nal; the structure acts as a linear filter. In the
case of stochastic excitation, the structure’s
steady-state response is too high-dimensional
for efficient calculation of features, and at the
other extreme, for example a sinusoidal exci-
tation, the response is too low-dimensional
to observe changes in features even with sig-
nificant damage to the structure. With a
properly tuned chaotic signal, the structure’s
steady-state response can be sufficiently low
dimensional to allow computation of features,
and sufficiently high dimensional that the
changes to the dynamics can be observed.
The deterministic-signal approach takes ad-
vantage of the ways in which the structure’s
filtering of the chaotic input changes as dam-
age to the structure occurs. Moreover, local
changes in the structure produce a global re-
sponse to the input signal; it is not necessary
to know where the damage occurred or if it
occurred in order to detect it.

The work by Nichols, Todd et al [§] de-
scribes a feature that used statistical predic-
tion of a damaged structure’s response based
on data taken from the structure in a healthy
condition. Here, we also analyze the time se-
ries from the filtered response, but we take
a somewhat different approach. Like Todd,
et al [22] we embed the time series in an ap-
propriate dimension in order to reconstruct
a geometric object that represents the state
space of the dynamical system. However, in
this work we isolate subspaces of the geomet-
ric object and compare them as they are re-
constructed from the filtered responses in sev-
eral damage scenarios. This approach serves
to both identify damage to the structure and
to localize the damage.



We will first describe the dynamical theory
behind the experiments. Then we will pro-
vide a detailed explanation of the continuity
test and its application to the experimental
data. Following that, the next section de-
scribes the physical configuration of the ex-
periments. We note at this time when the
data from the experiments was received, we
did not know the damage location or extent
in each scenario (other than identification of
a scenario in which the structure was undam-
aged). Thus, the identification and localiza-
tion of damage was done as a blind test of
the method.

0.2 Steady-State Dynam-

ics and Structural Re-
sponse to Chaotic Ex-
citation

We now turn to the description of a dynami-
cal system and its use in excitation of a struc-
ture.

Consider a nonlinear function f(z): X —
X, where we are interested in the evolution
f*(x) of points # € X, for n € Z . After
a period of transient behavior, the iterates
of x under f settle into a steady-state. This
is the so-called attractor of f in phase space.
This attractor can be thought of as the ob-
ject which all trajectories will approach. We
note that although the attractor is embedded
in phase space which has dimension equal to
the dimension of X, the attractor itself may
actually be lower-dimensional. For example,

the familiar Henon attractor,

(1)

can exhibit a single fixed point, zero dimen-
—.09,b = .4), seen in
figure 1, or an attractor with dimension d
such that 1 <d <2 (e.g. a =1.2,b=4), as
seen in figure 2.

fle,y) = (a—a? + by, x)

sional attractor (¢ =

(-3:-3)

Figure 1: A single fixed point at (—.3,—.3)
for parameter values a = —.09, b = .4 of the
Henon Map (equation 1)

We note that it is possible to find a rel-
atively low-dimensional nonlinear function
that exhibits complicated behavior, as seen
for example in figure 2. It is possible to spec-
ify the type of long-term behavior (as we saw
above) of the system by choice of parameters.

Now consider applying a linear filter to a
nonlinear function. Let the linear filter be the
matrix A. Let the nonlinear function be f :
R — R? be written as x,, := f"(z) Thus, we
have the following slaved dynamical system:



Figure 2: A fractal attractor for parameter
values ¢ = 1.2, b = .4 of the Henon Map
(equation 1). This picture was produced us-
ing Dynamies [25]

(2)

The input function is unchanged by the fil-
ter. However, the slaved system {y,}, is de-
termined by the filtering of the base signal

Yn+1 = Ayn + T,

{x,} (the drive signal). This is an example
of an Infinite Impulse Response (IIR) filter;
the series y, is affected by the entire time his-
tory of y. In practice, the dynamical system
f 1s not directly observable; we instead have
an observation function A : X — R. Then
we must include h(z,) in an appropriate di-
mension. Let H be the observation function
h composed with the inclusion to R?. This

function H can be thought of as an appropri-
ate coupling function. Thus, we have

Ynt1 = Ayn + H(z,) (3)

Tp = f(‘rn—l) (4)

The stability of any dynamical system is
described by its Lyapunov exponents. The
Lyapunov exponents describe the average
rate of growth or decay of a perturbation to
the dynamical system in each phase space
direction. In the case of a linear function,
the Lyapunov exponents are the logarithms
of the moduli of the characteristic values (i.e.
the characteristic exponents). We say that
such a system is stable if all of the charac-
teristic values lie inside the unit circle. In
the case of an IIR filter, as long as A is sta-
ble, the Lyapunov exponents of the IIR filter
are simply the characteristic exponents of A
together with the Lyapunov exponents of f
(see, e.g. Davies and Campbell [4]). The sta-
bility of the entire system depends on the fil-
ter A [4, 3]. In a practical situation, all filters
provided by linear structures are stable.

The phase space of the filtered signal ex-
ists in a space with dimension dependent on
the dimension of the drive signal and the di-
mension of the filter. However, in an ex-
perimental setting, a time series of measure-
ments of some function of the filtered sig-
nal is the only available quantity. In this
case, the phase space of the attractor can be
reconstructed using a time-series of the ob-
served quantity. It has been shown that the
reconstructed attractor is a faithful represen-
tation of the original attractor [16]. Such a
reconstruction is termed a time-series embed-



ding. If the observable quantity is denoted
g(n) = (g9(1),9(2)...,9(N)) recorded at dis-
crete times n, we reconstruct the attractor as
follows:

Take a delay time T and an embedding di-
mension m. Then the reconstructed phase-
space vector R(n) is the following for any
time n:

B(n) = (g(n),g(n+T),....g9(n+(m—-1)T)).
(5)

The delayed copies of ¢ are sometimes re-
ferred to as pseudo-state vectors. The time
delay T and embedding dimension m are
determined by examining the time-series it-
self. For the time delay, one determines the
amount of new information given by adding
another coordinate with time delay T, as T
varies. If T is too short, the observations are
too close in time to add any additional phase-
space information. If T is too long, the ob-
servations are too far apart to be relevant to
each other. For this application, the autocor-
relation function of the time series was exam-
ined and the delay T was chosen to coincide
with the loss of 2/3 of the autocorrelation.
Often the mutual-information function [7] is
used to find a suitable time delay, but the
mutual information function can occasionally
give falsely negative results [13]. The embed-
ding dimension can be determined by using a
false nearest-neighbor technique [10]. In this
technique embedding dimensions are added
one at a time until false nearest-neighbors -
vectors that are close in a smaller dimension,
but not close in a larger dimension - are elim-
inated. With the time delay T and embed-

ding dimension m chosen, we can now use the
reconstructed attractor to analyze character-
istics of the dynamical system.

In this application, there were multiple
time series corresponding to the output sig-
nals at 3 of the joints.
neighbor technique can still be employed to
find an appropriate embedding dimension [2].
The work by Boccaletti et al [2] described
time series that were weakly coupled. In this
experiment, we encountered time series that
were strongly coupled, due to the presence
of the drive signal. We modified the method
used in Boccaletti et al to add time series one

The false-nearest

at a time, and in different combinations in or-
der to determine if including all of the time
series are necessary to adequately reconstruct
the attractor. See also [11] to see another use
of the false-nearest neighbor method for mul-
tiple strongly coupled time series.

The attractor is usually reconstructed by
considering all state-space variables and re-
constructing the entire phase space of the dy-
namical system. In this case, we noted during
the false nearest-neighbor examination that
the addition of the time series from additional
joints’ sensors did not increase the embedding
dimension of the state-space. This shows that
addition of another joints’ time series pro-
vides redundant information; the drive sig-
nal forces a relationship between the reponse
signals. Since the response signals are just
linearly filtered drive signals, it is likely that
this relationship is continuous. Thus, there
was some evidence to suggest a continuous
function exists between the geometric objects
that are reconstructed from the joints’ sen-
sor time-series. We reconstructed an attrac-



tor from the x-data from each joint; we then
compared the attractors reconstructed from
the joints to each other to see if geomet-
ric changes occurred over the 6 scenarios.The
next problem we encounter is how to deter-
mine geometric changes in attractor recon-
structions.

0.3 The Continuity Test

Given time-delay embeddings of two different
geometric objects reconstructed from time
series data, it is often important to find a
functional relationship between the two ob-
jects. For instance, in the presence of noisy
data from the reconstruction of one object,
can we say if it is essentially identical to
another object? Proving or disproving the
existence of a continuous function between
two such objects can be a powerful tool for
analysis of nonlinear behavior.Given a pro-
posed function F' : X — Y the mathe-
matical definition of continuity at a point
x(t) € X is stated as follows: For all € > 0,
3§ > 0 such that if ||x(¢;) — x(¢;)]] < 6, then
|F'(2(t;)) — F(x(t;))]] < e. The geometric
meaning of this statement is illustrated in fig-
ure 3.

If we let the input to the function be des-
ignated as the source and the output desig-
nated as the target, then for an arbitrarily
small set in the target, a set in the source
can be found for which all points map to the
set in the target. Thus, we see that points
that are close to each other in the source map
to points that are close to each other in the
target. The "closeness’ is the relationship be-

Figure 3: Points from the 4-ball on the left
map to the e-ball on the right

tween ¢ and e.

For a theoretical geometric object the ana-
lytic definition is clear. However, translating
the mathematical e—¢ definition of continuity
to a time-series reconstruction setting raises
two important questions:

1. How can potentially noisy, finite data
yield a reasonable definition of continu-
ity either at a point or on an entire geo-
metric object?

2. How can such a definition be translated
to a meaningful and reliable statistic re-
garding the absence or presence of a con-
tinuous function?

Three unrelenting facts, therefore, seem to
create an impasse with finite data. The first
is that € cannot be made to go to zero. Thus,
some finite but small e that still indicates con-
tinuity will have to be determined. More-



Figure 4: An ¢ and 6 may be found but ¢ may
be large. Noise may force some points from

the 5-ball to be outside the e-ball.

over, for some x, there may be ¢ for which 4
can be found even if there is no continuous
F. Secondly, only a finite number of points
x € X can be checked for continuity. Lastly,
in the presence of noise, even for an obviously
continuous F' (e.g. an identity function), all
points from a d-ball may not map to the cor-
responding e-ball. For example, see figure 4.
These issues cannot be ignored, but we can
remove the impasse by creating a statistical
criterion for continuity that is consistent with
the ¢ — ¢ definition but is difficult to fulfill if
there is no continuous functional relationship.
We begin with two time series reconstruc-
tions, denoted X and Y. The space X will be
denoted the source, Y the target (or image).
We formulate the continuity test as follows.
Theoretically, we would choose an ¢ as in
We find the e—ball
around the point y in the space Y. We then

the formal definition.

take progressively smaller é— balls around
the corresponding point # € X that maps
to y € Y until all of the points in the d—ball
are mapped into the e—ball. However, be-
cause of the above issues, we need instead to
apply a statistical criterion which will reject
or accept the §—ball as passing the continuity
test for this e¢. For this, we formulate a null
hypothesis.

The null hypothesis assumes that points
x(t;) from any d-ball will have probability .5
of y(t;)’s being in the e-ball, regardless of the
size of the ¢-ball. To reject the null hypothe-
sis , we require a 95% confidence interval. If n
points are in any d-ball, the probability of m
or more of these points’ images in the e-ball
must be < .05 to reject the null hypothesis.

This null hypothesis essentially assumes
that points from the given é-ball map to
points in the e¢-ball by a coin flip. In order to
reject the null(equivalently, to accept the d—
ball as passing the continuity test for this €),
we must lie in the tail of the binomial distri-
bution. Thus, we must have 95% confidence
that the points from the 4-ball did not map
to the € ball by guessing.

This differs from the null hypothesis de-
scribed in [14]. To account for noise, our null
hypothesis allows some points from the §-ball
to map outside the e-ball but requires 95%
confidence; the probability of rejecting the
null hypothesis lies in the tail of the binomial
distribution. We formulate the statistic to be
based not on the acceptance or rejection of
the null hypothesis, but on the minimum ¢
that can be used to reject the null hypothesis
at each point. We call this value ¢*. The cor-
responding ¢ for which we have rejection of



the null will be termed §*. Thus, the statis-
tic can give some idea as to the scaling of any
possible functional relationship by looking at
the average of €* compared to §* given by the
data.

To compute the continuity statistic, N test
points x(¢;) are chosen at random times from
X. This serves to also distribute the points
randomly in space. In our implementation,
the data are normalized so that ¢ = 1. For
each test point, initially ¢ = § = 30. The
number of points in the §-ball around the rep-
resentative point x(¢;) is n. Image points in
the ball centered around the point y(?;) are
counted; this number is m. Then the bino-
mial distribution with parameters (n,.5) is
computed to find the cumulative probability
of finding m or more image points in the e-
ball. If this probability is < .05, the null
hypothesis is rejected for this point and ¢ is
recorded as €*. Then ¢ is reduced with the
same ¢. If the null hypothesis is not rejected,
4 is reduced. To maintain the 95% confidence
interval, there must be at least 5 temporally
non-correlated points in the é-ball. If no ¢
can be found with any acceptable ¢, we in-
crease the initially allowed e until €* can be
found for all points. Note that €* for each
point represents the smallest ¢ for which the
null hypothesis is rejected. The average and
distribution of €* is recorded, along with the
maximum ¢ for each €*.

To detect differences in geometric struc-
tures using the continuity test, we compare
both the average ¢* and the distribution of €*
for the set of representative points. For com-
parison, we compute the continuity statistics
for a known functional relationship in order

to see the smallest possible ¢ ; call this value
€. If ex > ¢g for a particular test, it is clear
that any functional relationship between the
source and target attractors has degraded. If
¢* is close to ¢y, we examine the distribution
for the tests in question and for the known
relationship to detect either degradation of
a functional relationship or evidence that a
continuous functional relationship persists.
For example, if we are testing for a continu-
ous function from the attractor reconstructed
from one filtered signal to the attractor re-
constructed from an identical signal with a
different filter, we first look for ¢* values for
a function between each attractor and itself.
We call these ¢q.
put signal was used, we are able to test for a
continuous function between attractors. Note

Then since the same in-

that the same signal is necessary to use the
continuity test with a time series embedding.
Since points in a time delay embedding are
assigned a time signature, a mapping exists
between source and target points with the
same time signature. We test to see if there
is evidence that this map is continuous.

We emphasize that the continuity statistic
is a one-sided statistic. Thus, evidence of a
continuous functional relationship f : X —
Y does not imply existence of a continuous
function g : Y — X. Those relationships
must be tested separately. In practice, we
compute the continuity statistic using source
X and target Y and then compute the statis-
tics using source Y and target X. These
statistics are considered separately, but we
note that in our tests, the continuity tests for
both functional directions gave similar statis-
tics.



0.4 Experiments

The experiments were performed by exciting
a scaled three-story frame structure with a
chaotic Lorenz oscillator. The test structure
is constructed of aluminum Unistrut columns
and aluminum floor plates.
figure 5. The floors were 1.3-cm thick alu-
minum plates with two bolt connections to
brackets on the Unistrut columns. The base
was as 3.8 cm thick aluminum plate. Sup-
port brackets for the columns were bolted to
the floor plate. All bolted connections were
tightened to a torque of 12.4 Nm in the un-

It is shown in

damaged state. Four Firestone airmount iso-
lators allowed the structure to move freely
in horizontal directions; these were bolted to
the bottom of the base plate. The isolators
were mounted on aluminum blocks and ply-
wood so the base of the structure was level
with the shaker.
to 140 kPa.
the structure by a 7.9 cm long, 9.5mm di-
ameter stinger. The stinger was screwed into
a tapped hole in the middle (both horizon-
tally and vertically) of the 61 cm side of the
structure’s base plate to impart translational
motion. On floor 1, 6 piezoelectric accelerom-
eters were installed. These accelerometers

The isolators were inflated
The shaker was connected to

were mounted on blocks glued to three of the
Unistrut columns (Joints A, B and D) at the
floor level in both in-plane directions. Sensor
locations are shown in figure 6.The normal
sensitivity of each accelerometer was 1 V/g.
Additionally, a force transducer was mounted
between the stinger and the base plate. This
force transducer was used to measure the in-
put to the base of the structure. A commer-

| e
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llo \JointB

|
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Joint D

Force

Figure 5: Experimental Apparatus

cial data acquisition system controlled from a
laptop PC was used to digitize the accelerom-
eter’s and force transducer’s analog signals.
The sensor and cabling were verified by us-
ing a handheld shaker to send a sine wave to
each accelerometer separately in order to vi-
sually inspect the outputs for each channel.
Tests to determine noise floor and sampling
rate were done before any other tests were
performed.

The input signal was a Lorenz oscillator.
The generic system can be represented by the
following:

(6)
(7)
(8)

In this system of equations, the parameter
n either speeds up or slows down the oscilla-
tion. Note that this controls the expansion

772‘?1 == 16(1’2 — 1’1)
njfg == 401’1 — T2 + 13

nT3 = —4x3 + 172
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rates and ultimately the stability of the re-
sponse. In this experiment, specifically we
used the z; solution of the Lorenz to excite
the structure.

The output signals consisted of an z-
(parallel to the direction of shaking) and a
y-(orthogonal to the direction of shaking) di-
rection signal at each joint. We also measured
the signal at the transducer.

The Lyapunov exponents of the drive sig-
nal are calculated as an expansion rate, that
is, in units of sec™!.If the playback rate of
the signal is increased (the data rate in-
creased) we note that the expansion rate also
increases. Thus, the expansion rates of the
entire system depend on the data rate of the
drive (input) signal as well as on the charac-
teristic exponents of the linear filter.

One measure of the fractal dimension of
the underlying attractor is directly related
to the Lyapunov exponents via the Kaplan-

Yorke conjecture [9]. This, in turn, affects the
geometry of the attractor. If the Lyapunov
exponents of the drive signal are changed by
the data rate, the dimensionality of the entire
attractor is affected. In these experiments,
we used two data rates and measured geomet-
ric differences in the underlying attractors for
both data rates.

of
Continuity Test

0.5 Application the

A false nearest-neighbor analysis of the out-
put data from the structure experiments
showed that the output signals at each of
the joint sensors did not require addition of
data from other joints’ sensors in order to
adequately embed the time series. Thus, it
was conjectured that there might be con-
tinuous functions between the phase-spaces
constructed by embedding the time series
from the joints alone. After a false nearest
neighbor analysis of each of the joints’ z-
component time series, we determined that
those phase spaces could be adequately re-
constructed in dimension 3. To obtain time-
delay for each of the z-component time se-
ries, we examined the autocorrelation func-
tions for those time series. The time delay
for data rate 2 was 75 and the time delay for
data rate 3 was 650.

We performed the continuity test on each
pair of time-series reconstructions in the un-
damaged scenario (scenario 0) and found ev-
idence of continuous functions between all 3
joints’ phase-space reconstructions. This ev-



idence is presented in figures 10- 39. In the
undamaged scenario, the average ¢* was close
to .3 in both data rate 2 and data rate 3 tests.
The distribution of ¢* for a representative sce-
nario 0 test is show in figure 13.

We then performed the continuity test be-
tween pairs of joints’ phase-space reconstruc-
tions in the other 5 scenarios. We stress that
on the other 5 scenarios, these were blind tests
in that we did not know either the location
or severity of damage, if any, at the time of
the tests. In all continuity tests, we utilized
a Theiler Window of 100 time steps in or-
der to limit false spatial correlations between
points that are temporally correlated. For
an explanation of the Theiler Window, see
e.g. [21]. We tested continuity for all pairs in
both directions. The results are displayed in
figures 10-39. The degree to which continuity
was lost was dependent both on scenario and
on data rate. We note that continuity was
tested for both directions (e.g. from joint A
to joint B and from joint B to joint A) but the
results were quite similar for both. For clar-
ity, only one direction appears in the plots.

0.6 Results

Looking at figures 10-39, we consider the con-
tinuity statistic for damage scenarios 1-5. In-
formation from scenario 0 (undamaged sce-
nario) appears on the graphs for compari-
son. For simplicity, let ¢y be the largest €*
obtained in the undamaged scenarios, where
comparison is only made for the continuity
test between the same joints (e.g. we com-
pare €* for scenario 1, continuity between

joints A and D to ¢, for scenario 0, continu-
ity between joints A and D only).We refer to
figures 8 and 9. These tables summarize the
performance of the continuity test in damage
prediction and localization for each scenario
and the two tested data rates.

0.6.1 Scenario 1

First we focus on figures 10- 15. They show
that average ex > ¢y for the maps between
joints D and A and D and B. In these graphs,
we also see no overlap at all in the 94% con-
fidence interval for ex versus the 94% confi-
dence interval for ¢g. For the map between
joints A and B, we see that average ex > ¢,
but that the confidence intervals do overlap
both for data rate 2 and data rate 3. One
could conclude that it is clear that joint D is
definitely damaged (from the loss of continu-
ity of maps between joint D and joint A and
joint D and joint B) and other joints may or
may not be damaged, but there is not over-
whelming evidence that either joint B or joint
A is damaged. Thus, we conclude that joint
D only is damaged in this scenario.

0.6.2 Scenario 2

Next we consider scenario 2. Those graphs
appear in figure 16-21. In all three of the
data rate 2 graphs, we see average ex > ¢
and a clear shift of the 94% confidence in-
terval to larger ex.
clude that damage has occurred, but there

This leads us to con-

is no overwhelming evidence that indicates
any one joint is damaged. However, we see in
the graphs for data rate 3 (figures 19 and 21)

10



that ex > ¢y for continuity between joints D
and A and between joints A and B, with 94%
confidence intervals completely disjoint from
those of scenario 0. This is sufficient evidence
to conclude that joint A is damaged. How-
ever, ambiguous results for data rate 2 and
some elevation of ex over ¢ for continuity be-
tween joint D and joint B in data rate 3 do
not allow us to conclude that no other joint
is damaged in this scenario.

0.6.3 Scenario 3

Scenario 3 shows some very clear evidence of
damage only to Joint B. The graphs for this
scenario are shown in figures 22-27. In fig-
ure 24 we see nearly identical confidence in-
tervals for continuity between joints D and A;
in this case we have average ex & ¢;. How-
ever, the graphs for the maps between joints
D and B and between joints A and B show
no overlap at all of the 94% confidence inter-
vals, and average ex > ¢;. The same results
appear for data rate 3, although we see some
slight elevation of ex over ¢ for continuity be-
tween joints D and A. However, the change in
the distribution is slight compared to the dif-
ferences in confidence intervals for the other
functional relationships. Thus we conclude

that joint B only is damaged in this scenario.

0.6.4 Scenario 4

The graphs for scenario 4, shown in figures 28
-32 show clear evidence of damage. In all
three graphs, we see average ex > ¢y and lit-
tle or no overlap of the 94% confidence inter-
vals for continuity of maps between all three

joints. Thus, we conclude that damage has
occurred, and it is likely that it has occurred
in more than one joint. The data rate 3 re-
sults, seen in figures 29, 31 and 33 substan-
tiate this claim; in all three functional rela-
tionships we see ¢x > ¢ and no overlap of
the 94% confidence intervals.

0.6.5 Scenario 5

We next consider scenario 5. These graphs
appear in figures 34-39. In all of these graphs,
we see average ex > €g, but no real separation
of the 94% confidence intervals. In all of the
graphs, we see a clear shift of the distribu-
tion to larger ex for maps between joints in
scenario 5; note that the lower end of the 94%
confidence interval is clearly above average ¢
for maps between joints D and A and between
joints D and B. Thus, we can say conclusively
that damage has occurred. However, there is
no clear location of the damage. Consider-
ing data rate 3, in figures 35, 37 and 39, we
have a bit of a contradiction. In all the other
scenarios, differences between ex and ¢y were
much larger for data rate 3 than they were for
data rate 2. However, for this scenario, the
difference between average ex and €, we saw
for continuity between joints A and B in data
rate 2 nearly disappeared in data rate 3. The
data rate 2 results point to no clear location
of damage, while the data rate 3 results point
quite specifically to damage in joint D but no
damage to either joint A or joint B.
Although the original continuity tests were
blind tests, disclosure of the damage levels re-
vealed that all 3 joints were unbolted in this
scenario. It is possible that bouncing motion
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was replaced by sliding motion because no
bolts remained in the joints. Although the
results clearly pointed to some sort of dam-
age in this scenario, it is possible that the
response of the structure to the applied vibra-
tion was quite different in this scenario than
in the others. Certainly, further investigation
of this sort of damage is indicated from the
results of this experiment.

0.7 Conclusion

The continuity test clearly was able to detect
damage in all 5 damage scenarios. In the sce-
narios that involved damage to joint D only
or joint B only, the test was able to localize
the damage for both data rates. Scenario 2
clearly showed evidence of damage, but local-
ization was only marginally predictable and
relied on only results from data rate 3. The
other one-joint damage scenarios showed evi-
dence of localization for both data rates. Sce-
nario 4 also showed clear evidence of damage,
but this test was not able to localize the dam-
age. Scenario 5 posed something of a prob-
lem. All tests indicated that damage to joint
D occurred. However, results were contradic-
tory concerning damage to the other joints.
For data rate 3, there was clear evidence that
joints A and B were not damaged, while in
data rate 2 there was some evidence of dam-
age to joints A and B.

One of the drawbacks to this particular
test was that we could not directly compare
the attractors reconstructed from undamaged
structures to those reconstructed from dam-

aged structures. If the prerecorded signals
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were synchronized for each damage scenario
in the frame structure tests it would be pos-
sible to match filtered signals to each other
via the input signal. In this case, it would
be possible to test for a continuous map be-
tween known undamaged responses and the
responses for different damage scenarios (i.e.
mapping undamaged reconstructions to dam-
aged reconstructions). By comparing ¢* for
maps between undamaged joints in different
trials to €* for maps between an undamaged
and a damaged joint it might be possible to
localize damage for the scenarios that exhib-
ited damage to more than one joint. In [11]
this method, using identical prerecorded sig-
nals on both damaged and undamaged struc-
tures, identification of very low levels of dam-
age was possible using the continuity test.
However, damage in those experiments was
confined to one location in the structure; lo-
calization was not discussed.

The continuity test warrants further inves-
tigation as a tool both to detect and to local-
ize damage. One advantage to the continuity
test is that the output does not require addi-
tional statistical analysis other than scrutiny
of the distribution of the ex. Thus it is pos-
sible to set a threshold above which elevated
average ex could signal damage; this would
allow a certain degree of automation in the
damage detection process. It is especially
encouraging that conclusive results were ob-
tained for 4 out of 5 scenarios even in a blind-
test environment.



Scenario | Joint A Joint B Joint D
0 none none none
1 none none bolts removed
2 bolts removed | none none
3 none bolts removed none
4 bolts removed | none bolts removed
5 bolts removed | bolts removed | bolts removed

Figure 7: Damage Scenarios

Scenario | Actual Damage || Detected Damage

O | W DN —

< =<z <| ==
<z <z =z =
= = 2 2| =< T
< =<z <| ==
=] =] =< =< 2|
= =] 2] <= T

Figure 8: Damage Classification Results, Data Rate 2. Actual Damage follows figure 7
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Figure 9: Damage Classification Results, Data Rate 3. Actual Damage follows figure 7
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Figure 10: Scenario 1, Data Rate 2.
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Figure 12: Scenario 1, Data Rate 2.

Average &*
with 94% Confidence Interval
Continuity Between Joint D and Joint A
Date Rate 3

——5Scen 1 Avg.
[ ]94% Conf.

——Scen O Avag.

—=—Scen 1 Avg.
[] 94% Conf.

Scen 0 Avg.
54% Conf.

2 3 15 4
Trial

Figure 13: Scenario 1, Data Rate 3.
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Figure 14: Scenario 1, Data Rate 2.
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Figure 15: Scenario 1, Data Rate 3.
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Figure 16: Scenario 2, Data Rate 2.
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Figure 17: Scenario 2, Data Rate 3.
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Figure 18: Scenario 2, Data Rate 2.
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Figure 19: Scenario 2, Data Rate 3.
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Figure 20: Scenario 2, Data Rate 2.
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Figure 21: Scenario 2, Data Rate 3.
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Figure 22: Scenario 3, Data Rate 2.
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Figure 23: Scenario 3, Data Rate 3.
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Figure 24: Scenario 3, Data Rate 2.
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Figure 25: Scenario 3, Data Rate 3.
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Figure 26: Scenario 3, Data Rate 2.
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Figure 27: Scenario 3, Data Rate 3.
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Figure 28: Scenario 4, Data Rate 2.
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Figure 30: Scenario 4, Data Rate 2.
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Figure 31: Scenario 4, Data Rate 3.




Ex

Average £*
with 94% Confidence Interval
Continuity Between Joints A and B
Data Rate 2

Figure 32: Scenario 4, Data Rate 2.
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Figure 33: Scenario 4, Data Rate 3.
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Figure 34: Scenario 5, Data Rate 2.
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Figure 35: Scenario 5, Data Rate 3.
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Figure 36: Scenario 5, Data Rate 2.
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Figure 37: Scenario 5, Data Rate 3.
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Figure 38: Scenario 5, Data Rate 2.
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Figure 39: Scenario 5, Data Rate 3.
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