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Using experimental and numerical systems, we show that it is possible to maintain excellent

synchronization between a drive and response system even when there is large (50%) parameter

mismatch between them and they are coupled only though a scalar signal. By optimizing the

coupling consistent with a stability constraint, we show that a consequence of the optimized

coupling is that the synchronization is maintained even in the presence of bifurcations in the

drive system - despite the condition the response parameters are held constant.
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The curious ability of two systems to exhibit unpredictable, chaotic behavior yet evolve

in perfect synchrony has generated great interest, mostly because of potential applications in a

communications capacity [1-5]. In such a role, one typically has a unidirectionally coupled pair

of identical systems with a response or receiver system that synchronizes to the dynamics of the

drive or transmitter system. If the dynamics of the drive contains an information signal, the

ability to recover the information at the response hinges on the ability to faithfully reproduce the

drive dynamics. Depending on the coupling technique, the problem is easily complicated by

system mismatch, as in some cases component differences of a few percent have been shown to

be sufficient to induce momentary large bursts away from synchronization [6-8], seriously

limiting the use of such systems. In this Letter we show that by optimizing a coupling

configuration borrowed from control theory, we can achieve such a highly robust

synchronization with a single scalar transmitted signal that the response can closely reproduce

the drive dynamics despite parameter mismatches well beyond expected levels, e.g., due to

component tolerances or environmental influences. Because changes in a parameter can result in

significant changes in dynamics, this robust synchronization and its immunity to parameter

mismatches allows the dynamics of the response to be varied through bifurcations and different

dynamical regimes solely by varying a parameter at the drive end.

While the necessary and sufficient stability conditions of the synchronized state are a

current topic of debate [6, 9-11], we focus on local stability and optimize our approach to

guarantee robust synchronization. Our criterion, generally stated, is as follows. Given a chaotic

system, x(t), where x
•

= F(x) , and a second system, y(t), governed by y
•

= G(y,x), we require that

the eigenvalues of the response Jacobian, A=DG, have negative real parts everywhere on the

attractor. For different systems, the mechanics of satisfying this constraint vary somewhat. For

piecewise-linear systems, where the system switches between a finite number of constant

Jacobians, we simply ensure that our coupling renders the real parts of the eigenvalues negative

for each Jacobian. For smoothly nonlinear systems (not piecewise-linear) we choose the more

exhaustive approach of ensuring that the instantaneous eigenvalues of the time-varying response



Jacobian, A(t), have negative real parts everywhere on the attractor. Other criteria of varying

stringency for synchronization [12] could be similarly realized with our coupling configuration

and accompanying optimization routine, yet we have found that optimization of our criterion is

sufficient to provide excellent synchronization in experimental and numerical examples, even

under conditions of substantially mismatched parameters and noise.

Our choice of coupling configuration was motivated by the recent results of Peng et al.

[13] in which it was shown that systems with more than one positive Lyapunov exponent can be

synchronized with a scalar transmitted signal. A key feature of the technique is that it provides

2m adjustable coupling parameters for m-dimensional systems. The strategy may be generally

outlined by the following. To generate the transmission signal u, we define u(t) = KTx(t) where

K is a constant column vector, (k1, k2, . . ., km)T, and x(t), the drive system state vector.

Likewise, the response state vector y(t) is used to generate a second scalar signal, v(t) = KTy(t).

The difference between the two scalars is multiplied by a second constant vector, B, and

subtracted directly from the vector field, F, of the response subsystem. Otherwise stated,

                                                dy(t)/dt = F(y(t)) - BKT(y(t) - x(t))                                   (1)

and A becomes [DF - BKT]. This configuration is a general form of linear coupling with a

transmitted scalar, and its relation to a coordinate transformation is addressed in Ref. [14].

Introducing a parameter mismatch, ∆µ = µx− µy, so that the vector fields of the two

systems are no longer identical, we define the synchronization error as ξ(t) = x(t) - y(t). Then

             dξ(t)/dt = dx(t)/dt - dy(t)/dt = F(x(t), µx) - F(y(t), µy) + BKT(y(t) - x(t)).          (2)

Rewriting and linearizing about the synchronized state y = x gives

                                              dξ(t)/dt =  [J(µy, t) - BKT]ξ(t) + δ(t)                                  (3)

where J(µy) = [∂F(y(t), µy)/∂y]y=x and δ(t) is a source term due to the parameter mismatch, δ(t)

= ∆µ [∂F(y(t),µy)/∂µy]. For identical systems, the source term vanishes and synchronization of

the two chaotic systems is realized if the norm ||ξ(t)|| approaches 0 in the long time limit. Without

the luxury of identical systems - a typical experimental condition - the level of synchronization is



limited by the existence of the source term. Solving for the error between mismatched systems

gives

                                           ξ(t) = Φ(t)Φ−1(to)ξo + Φ(t)Φ−1(τ)δ(τ )
to

t

∫ dτ                            (4)

where Φ(t) is the principle matrix function defined by dΦ(t)/dt = C(t)Φ(t) where C(t) = [J(µy, t)

- BKT][15]. Taking norms in the limit of to = -∞, we establish the inequality

                                                     ξ(t) ≤ Φ(t ,τ ) δ(τ)
−∞

t

∫ dτ                                           (5)

where the ξo term in Eq. (4) goes to zero provided the Lyapunov exponents are negative.  Note

we have taken Φ(t,τ) to be short for the product Φ(t)Φ−1(τ). Assuming this to be the case, we

establish an upper bound on the error norm, ||ξ(t)||max, by taking the maximum magnitude of the

source term, ||δ(t)||max=|∆µ|||∂F(y(t),µy)/∂µy||max then integrating over ||Φ(t,τ)||. Taking ||Φ(t,τ)||

< exp(Λ(t-τ)), where Λ is the largest instantaneous Lyapunov exponent of the response

subsystem, we estimate the integral to be λ-1 where λ is the average largest Lyapunov exponent

as measured at a representative sampling around the attractor. We take the average exponent in

part because of the averaging effect of the integration over rapidly changing exponents, and, to

be shown later, because it matches up well with our optimization scheme. Then the maximum

error magnitude between two mismatched systems is given by

                                                      ξ(t)
max

≤ δ(t)
max

(−λ)−1                                              (6)

which alternative arguments have also revealed [16, 17].

The problem of mismatched systems suggests profit in utilizing an optimization

algorithm for the following reasons: (i) there are 2m adjustable parameters in our coupling

scheme - too many for simple trial and error searches for the best combinations, and (ii) the result

stating that the maximum error varies inversely with the largest conditional Lyapunov exponent

clearly implies that the performance will be maximized when the largest exponents are as

negative as possible. Note that this implies that despite potentially large parameter mismatch

between drive and response systems (contained in δ), the drive dynamics can be closely

reproduced at the response provided we are able to find a B-K set which adequately minimizes



negative exponents of the response subsystem. The following two examples serve to outline our

optimization approach for two different types of chaotic systems, and to demonstrate both the

ability of the response to reproduce and track the dynamics of the drive and the dependence of

the maximum error on the conditional Lyapunov exponents.

Example 1 - Our experimental system is a four-dimensional piecewise-linear electronic

system that is modeled after the hyperchaotic Rössler equations [18]. In a typical regime, the

system is closely modeled by

            dx1 / dt = −.05x1 − .5x2 − .62x3                                           (7)

               dx2 / dt = x1 + ρ x2 + .40x4                                               (8)

                  dx3 / dt = −2x3 + g(x1)                                                  (9)

           dx4 / dt =−1.5x3 + .18x4 + h(x4)                                       (10)

           g(x1) = 10(x1 − .68) Θ(x1 − .68)                                        (11)

         h(x4) = −.41(x4 − 3.8) Θ(x4 − 3.8)                                     (12)

where ρ  is a convenient bifurcation parameter usually varied between .05 and .19 and Θ(.) is the

Heaviside step function. At a given time, the dynamics of the system is governed by one of four

constant response Jacobians, [Jn - BKT] (n = 1,...,4), where Jn is the normal Jacobian of the

equations and the BKT term accounts for the coupling. To optimize the coupling parameters in

the piecewise-linear case, we consider the system as four separate linear control problems and

focus on the real parts of the eigenvalues of each Jacobian. The criterion demands that the largest

real parts of the eigenvalues of each Jacobian are negative, and we optimize the system by

minimizing a weighted sum of the real parts, weighted by the amount of time typically spent in

each of the four regimes. The sum is optimized by a numerical routine [19] which searches the

eight-dimensional B-K space for local minima of this value. In our search, it is interesting to note

that while we intentionally restrict the magnitudes of the bs and ks to be roughly on the order of

the coefficients in the vector field, allowing for arbitrarily large values typically provides little

improvement in stability. Thus the optimal coupling parameters are not simply provided by the

largest coupling strengths obtainable, rather, a more subtle approach is in fact required to find the



best values. The best local minima in our restricted space are recorded, and typically we find that

up to several hundred different minima scattered throughout the B-K space can be located that

have similar magnitudes. For the data presented here from the piecewise-linear 4-d circuit, we

choose K = (-1.97, 2.28, 0, 1.43) and B = (.365, 2.04, -1.96, 0). In compliance with our criterion,

the resulting largest real parts of the eigenvalues in the four response matrices are (-1.4, -.96,

-.50, -.16).

Applying the numerical optimization results to the circuits proves to provide rapid and

robust synchronization. For this and other sets of coupling parameters, the synchronization

between systems is achieved down to the noise level in a quarter of the period of the natural

oscillation frequency of the 4-d circuit (about 200 microseconds). In Fig. 1 we show that the

synchronization is maintained between the two systems in all regimes of the drive circuit. We

stress that the bifurcation parameter of the response subsystem remains constant, and only the

drive system parameter is varied to produce the changes in dynamical behavior of both systems.

From the views of the attractors pictured, a qualitative match between the dynamics of the two

systems is evident as the drive system is varied from a period-1 limit cycle, through bifurcations,

and into regimes of chaos and hyperchaos. We refer to the bifurcations of the response system as

imposed bifurcations. The bar graphs indicate the parameter values of each system, the dotted

line indicating that ρy is held fixed. The maximum mismatch shown is 52%.





Example 2 -  Our approach can be extended to also encompass nonlinear systems with

continuously varying Jacobians, and we take as an example the well-known Lorenz equations

                                                               dx1 / dt = σ (x2 − x1)                                           (13)

                                                            dx2 / dt = x1(R − x3) − x2                                       (14)

                                       dx3 / dt = x1x2 − bx3 .                                         (15)

Similar to the frozen-coefficient method in control theory [20], we evaluate the eigenvalues of

the response Jacobian at a number of samplings of y(t) around the attractor. Such a criterion was

previously proposed for synchronization of chaotic systems, that is, the real parts of the

eigenvalues of the response Jacobian are required to be negative pointwise around the attractor

[10].

To maximize the robustness of the synchronization between mismatched Lorenz systems

with the BK-coupling approach, we optimize the response system in the following way. One

thousand points separated by a fixed time, ∆t, are sampled on the Lorenz attractor with R=Ry. At

each point, the real parts of the eigenvalues (which we abbreviate as Re[ζn] ) of [J(t) -

BKT]t=n∆t  (n=1, ..., 1000) are evaluated. We demand that Re[ζn] are negative for all n and the

system is optimized by minimizing the mean largest Re[ζn] as averaged over the thousand

points. Again this is achieved by our optimization algorithm probing the BK-space in search of

local minima of the mean, while retaining the constraint that all of the real parts of the

eigenvalues are negative everywhere.



As in the piecewise-linear case, we find that hundreds of local minima exist in BK-space,

and all result in rapid, robust synchronization between identical Lorenz systems. In the presence

of significant parameter mismatch, we find that the response system dynamics closely follows

that of the drive. Similar to Fig. 1, in Fig. 2 we show the attractors of the drive and response at

different parameter settings of the drive. The response parameter, Ry, remains constant at 200,

and the drive parameter, Rx, is set to 120, 165, 235, and 334. The bar graphs in the figure

indicate the parameter setting for the attractors just above them. Despite the large mismatch in

parameter and subsequent changes in dynamics, the response system is quite successful in



reproducing the drive dynamics with little perceivable distortion, and again we see imposed

bifurcations in the response system.

To test our estimate for the maximum synchronization error between two mismatched

systems, ||ξ(t)||max, we integrate two Lorenz systems with 1,100 different sets of B and K vectors

corresponding to local minima as described above with Rx = 165 and Ry = 200. Ignoring initial

transients, for each set the magnitudes of both the average and maximum errors are recorded and

plotted in Fig. 3 against the largest conditional Lyapunov exponent, Λ. For each set, the

estimated maximum is also plotted, as calculated from Eq. (7), and all three quantities are



expressed as a fraction of the size of the attractor, ||x||max. While the average error is shown to

decrease gradually as Λ becomes increasingly negative, the maximum error is clearly strongly

dependent on the exponent and is effectively suppressed for large negative values. Moreover, for

the range of Λ plotted, the estimated maximum error is shown to be a quite reasonable upper

bound to the measured errors.

Although both the experimental and numerical examples demonstrate intolerance to a

parameter shift in a linear term of the vector field, the results are similar for shifts in the

nonlinear parameters as well. In the Lorenz system, for example, we can vary the multiplier in

the x1x 2 term in Eq. (15) so that the drive and response are mismatched up to 30% while the

induced synchronization error ||ξ(t)||/||x||max remains below .05.

In summary, we have described straightforward criteria for enhancing the

synchronization between systems that are not identical with the transmission of a scalar signal.

For both nonlinear and piecewise-linear systems, we put forth strategies for minimizing the

relevant quantities in each system with an intelligent search through coupling-parameter space.

Subsequently, we found that optimization of the coupling allows the response system to

reproduce the dynamics of the drive system, even as the drive drags the response through

bifurcations and into regimes of chaos and hyperchaos.
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