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Abstract

Research into applications of synchronized chaotic systems assumes that it will be necessary to
build many different drive-response pairs, but little is known in general about designing higher
dimensional chaotic flows. In this paper, I don’t add any design techniques, but I show that it is
possible to create multiple drive-response pairs from one chaotic system by applying chaos control
techniques to the drive and response systems. If one can design one chaotic system with the desired
properties, than many drive-response pairs can be built from this system, so that it is not necessary
to solve the design problem more than once. I show both numerical simulations and experimental
work with chaotic circuits. I also test the response systems for ability to overcome noise or other

interference.
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I. INTRODUCTION

There has been much work on using synchronized chaos [1-13] for applications such
as communications or radar, but a constant assumption in all of this work has been that
designing many different chaotic systems (for different transmitters, for example) would not
be difficult. Simply designing new chaotic systems has not proven too difficult, as Sprott has
shown [14], but designing chaotic flows with specific properties in mind is considerably more
difficult. There are design techniques for one dimensional maps, and several authors [15, 16]
have shown how to extend these techniques to a continuous system, but these techniques are
suitable only for a very limited range of chaotic systems. If one wants a chaotic flow that
may be built as a high frequency circuit, for example, the behavior of the available circuit
elements is complex enough that the circuit design must proceed experimentally.

I do not attempt to solve the general design problem, but instead I show that if one
chaotic system with the desired properties may be built, then control techniques, such as
the OGY technique [17], may be used to create multiple drive-response pairs from the desired
chaotic system.

Instead of designing a response system to synchronize to a particular chaotic drive system,
the response system will synchronize to a particular chaotic trajectory. Chaotic control
techniques are used to select the drive trajectory, and control techniques are also used to
make the response system synchronize or not synchronize to the drive system.

The basic method is this:

1) Allow the chaotic drive system to follow a chaotic trajectory of finite length L, and
store control information about this trajectory.

2) Control the drive system to always follow this finite length chaotic trajectory. Since
the trajectory is finite length, it must be repeated, so the system is actually periodic with
period L.

3) While the drive system follows a designated trajectory, use a signal from the drive
system to drive a response system. The response system need not be identical to the drive
system, as generalized synchronization can be useful for some applications.

4) While this response system is being driven, store control information about it.

5) Use the stored control information to control the driven response system. The response

system trajectory will be the same as it was without control if the same drive signal is being



used.

6) If the drive signal is now switched to a different signal, then the response system
trajectory will be different.

The drive system can be controlled to follow different trajectories. Each different drive
system trajectory has a corresponding response system trajectory when the response is
uncontrolled. Using the matching response control sequence will not alter the response
trajectory, but using a non-matching response control sequence will alter the response from

the uncontrolled trajectory.

II. CHAOTIC SYNCHRONIZATION

I assume a chaotic drive system of the form
T=[(7) (1)
and a response system of the form
j =g (i) +h (&) (2)

where ¥ and ¢ are vectors, and h(Z) is a function of #. The coupling in eq. (2) is a linear
coupling, as are all types of coupling used in this paper, but other types of coupling are also
possible.

For synchronization to occur, all the Lyapunov exponents of the dynamical system of
eq. (2) must be negative. If the function ¢ is identical to the function f, then identical
synchronization is possible, otherwise the synchronization is said to be generalized synchro-
nization. Detecting identical synchronization is easy, as signals in the response system will
be almost the same (within experimental limits) as signals in the drive system. Detecting
generalized synchronization is more difficult, and in fact there are many different definitions
for generalized synchronization [12]. For this paper, we choose a response system with only
one basin of attraction, and for synchronization we require only that the response system
have all negative Lyapunov exponents. In this case, one may use an auxiliary system to
detect synchronization [16]: two copies of the response system are built, and their outputs
are compared to each other. If the outputs of the two response systems match (within

experimental error), then the response is said to be synchronized to the drive.



III. CONTROL

Ott, Grebogi and Yorke (OGY) [17] showed that only small perturbations were necessary
to control a chaotic system if the control kept the system near solutions of its equations
of motion, such as unstable periodic orbits. Hayes et al. [19] later showed that one could
encode information by using OGY control to switch between different trajectories of a chaotic
system. As Hayes pointed out, the availability of multiple trajectories was a consequence of
the positive entropy of a chaotic system. Hayes felt that this positive entropy should make
chaotic signals natural information carriers. Hayes and others [11, 19, 20] have shown that
one may use different states of the chaotic system as symbols, and control may be used to
determine which symbol sequences are transmitted.

In this work, chaos control techniques are used to generate multiple different trajectories
from a chaotic system. These trajectories have a finite length, so they must be repeated,
but the trajectories may be chosen long enough that they still have broad band spectra. A
chaotic response system is also controlled so that it will synchronize only to one trajectory

from a chaotic transmitter, and not to any others.

IV. NUMERICAL WORK

I first demonstrate control and synchronization in a numerical experiment. In this nu-
merical example, the drive and response systems are identical, so identical synchronization
is seen. The chaotic system here is 3 dimensional, and I measure the length of a chaotic
trajectory by the number of times that the variable x5 crosses 0 in the positive direction.

The drive system is similar to the piecewise-linear Rossler system [22]:
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where o = 10.0,mg = 0.1, mz = 15.0, 29 = 3.0,b1 = x¢(mo —my), and by = —by. Figure 1(a)



is a plot of @3 vs. 2y , while 1(b) is a plot of 3 vs. x5 . These equations were integrated
with a 4th order Runge-Kutta integrator with a time step of 0.04 s.
The response system is a duplicate of the drive system. The response system is described

by

d
% = —a (0.05y; + 0.5y; + ys3)
d
% =—a(—y1 —0.3ys + ¢ (y2 — x3)) (4)
d
% = —a(—g(y)+ys)
dz
o= a(|zg — 32| — 2)

where the variable z is a measure of the average synchronization error and the coupling
constant ¢ = 0.1.

An outline of the experiment is:

1) Allow the drive system to evolve freely for 100 cycles (measured by the x5 0 crossing),
after allowing for initial transients to die down

2) Each time x5 crosses 0 in the positive direction, record the values of x; and 3. The
sequence of 100 z; and z3 values is the control sequence for the drive. Call this control
sequence chaosl.

3) Repeat for different initial conditions to get the control sequence chaos?2 .

4) Control the drive system with chaos! by waiting for a2 to cross 0 in the positive
direction and then setting x; and z3 equal to their corresponding values from the control
sequence chaosl . Use the x5 signal from the drive system to drive the identical response
system (eq. 4). The control sequences have a finite length, so the controlled system is now
periodic, but with a period of 100.

5) The response system is now being driven by a controlled signal from the drive system
(which is controlled by chaosl), and it will synchronize exactly to the drive system. When
the response variable y, crosses 0 in the positive direction, record the values of y; and y;
to get the response control sequence responsel! . When the drive system is controlled by

chaos2, repeat the same procedure to get the response control sequence response? .



FIG. 1: Attractors for the chaotic system of eq. (3).
A. Phase Control

When the uncontrolled response system of eq. (4) is driven by the uncontrolled drive
system of eq. (3), identical synchronization occurs; that is, y1,y2, and ys approach w1, 29,
and x3 . If drive and response are controlled by the same control sequence, identical syn-
chronization will also occur, but only if the drive and response control sequences are in phase
with each other.

The variable z in eq. (4) is used to help judge if the drive and response control sequences
are in phase. With control on for the response system, when y; crosses 0 in the positive
direction, the value of z is compared to some threshold. If z is less than the threshold,
then it is assumed that drive and response are synchronized, and y; and y3 are set to the
appropriate values in the control sequence. If z exceeds the threshold, then it is assumed
that the drive and response control sequences are out of phase, and so the phase of the
response control sequence is advanced by 1 before control is applied. In a manner similar to

digital code division multiple access (CDMA) [23], the response control sequence is advanced
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FIG. 2: Results of driving and controlling the response system of eq. (4). 6 = x; — y; is the
difference between drive and response systems. In (a), the proper response control sequence was
used, resulting in synchronization after a transient. In (b), the wrong response control sequence

was used, resulting in no synchronization.

at a faster rate than the drive control sequence until synchronization is obtained.

Figure 2 shows the results of the control when a threshold of z = 0.2 is used. Figure 2 is
a plot of § = #y —y; . In fig 2(a), the response system is free running (¢ = 0) for the first 40
s. At t =40 s, cis set to 0.1 and control is applied to the response. Initially the drive and
response control sequences are out of phase, so there is an initial transient (which should
depend on the length of the control sequence) before synchronization is obtained at about
200 s. In fig. 2(b), different control sequences are used for drive and response. Once again,
control is started at 40 s, but because drive and response control sequences are different, no
synchronization is seen.

The utility of this signal recognition method will depend on how many different control
sequences can be produced. It should be possible to estimate the number of different control
sequences by assigning symbol sequences to the control sequences. First, a generating parti-
tion for the chaotic system must be found. While this is a difficult process in general, there
are some recent methods for finding such partitions [24, 25]. The generating partition is
then used to define a set of symbols; i.e., if the chaotic trajectory passes through one region,

one particular symbol is produced, while if it passes through a different region, a different



symbol may be produced. It may be that the chaotic system possess a grammar, so that
not all symbol sequences occur. The number of different symbol sequences that occur for a
given sequence length L should correspond to the number of possible control sequences.
This simple flow is useful to show how the control and synchronization method works,
but it is not practical. Adding Gaussian white noise with an amplitude of 0.02 or greater
destroys synchronization. Below I show a circuit example which is more robust to additive

noise.

V. CIRCUIT EXPERIMENTS

The circuit used for these experiments is based on a chaotic system that maintains phase
synchronization even when noise much larger than the transmitted signal is present [26, 27].
This system consists of a Rossler like chaotic circuit which operates in one frequency range
coupled to a stable (nonoscillating) system which operates in a much lower frequency range.
The separation of frequencies allows the lower frequency part of the response circuit to stay
in phase synchronization to the lower frequency part of the drive system. This is a fairly
complicated chaotic circuit, and designing a circuit with these noise-robust properties was
difficult, so it is desirable to produce many drive-response pairs from this circuit, rather
than having to design more circuits with the same properties.

The circuits used were built using operational amplifiers. The drive circuit may be

approximately described by the equations
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FIG. 3: Attractors for the chaotic circuit used to provide a driving signal. (a) is the attractor from

the fast part of the circuit, while (b) is the attractor for the slow part of the circuit.

where R = 100 k2 , ¢} = 0.1pF, and C5 = 0.001pF . For these parameters, the signal
x1 has a frequency of approximately 10.5 Hz, while x5 has a frequency of about 946 Hz.
Figure 3(a) is a plot of x5 vs. xq, and 3(b) is a plot of @4 vs. x3. The function f(x) serves
to broaden the spectrum of the fast signals (x5 through x5 ).

The signal that is actually transmitted is z; defined by

dee 1 sl =) 4 (6)
dt —  RC, 1 x3 + a2 !

where the sq(x) function means that sq(z) = 15 Vif 2 > 0 and sq(z) = -15 V if 2 < 0.

The sq(x) function was executed by an op amp with a very large gain. The integral was
used as a low pass filter so that x; was not a square wave.

Figure 4 is a plot of z; as a function of time, while figure 5 is its power spectrum. The
signal x; has a constant envelope, which makes it more efficient to transmit, and makes it
easier to restore its amplitude to a known value after transmission.

The response circuit may be described by the equations

dyl 1
— = — 0.1 0.5 0.5
dt Rcl ( H + Y2 + |y3|)

dy: _ |
dt —  RC,

(—y1 + 0.1y2) (7)

N
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FIG. 4: Transmitted signal 2; produced by the chaotic driving circuit.
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FIG. 5: Power spectrum of the signal z; produced by the chaotic drive circuit.
dyg 1
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where R, Cy and C are the same as in eq. (5). The constant k is used to alter the amplitude
of the transmitted signal ;.

The response circuit does not match the drive circuit, which means that exact synchro-
nization is not possible. In order to determine when generalized synchronization took place,
the auxiliary system approach was used [28]. A second response circuit that was identical
(within experimental error) was built. In order to improve the matching between circuits,
resistors with a 1% tolerance were used, and a 20 turn potentiometer was used in the inte-
grator for the y; signal to correct the time constant 1/RC; for error in the capacitor value.
The y; signals from the two response circuits were compared to determine if generalized

synchronization was occurring.



The control methods used for the circuit were similar in principle to those used for
the numerical experiment, but some details were different. Rather than try to control the
drive circuit as in the numerical section, a 10,000 point signal x; from the drive circuit was
digitized at 20,000 points/s and played back through an arbitrary waveform generator. The
playback rate was chosen so that the frequency of the signal from the arbitrary waveform
generator matched the frequency of the original drive signal. Chaotic signals were recorded
at 2 different times, resulting in 2 different chaotic sequences, labeled as chaos! and chaos2
. The chaotic signals were played back with a peak to peak amplitude of 1.98 V, and the
drive constant k in eq. (7) was set to 1.0.

For the control of the response circuit, the y; signal was first passed through a 1 pF
capacitor to remove the DC component. This signal was then integrated by an op amp
integrator to smooth out any residual ripple in y;, producing the signal v :

dp 1
dt  RC,

(y1 +0.1¢) (8)

where R and (' were previously defined. Several logic circuits were then used to give a
short +5 V pulse when ¥ crossed 0 in the negative direction.

In order to record the necessary control information, the response circuits were driven by
the recorded z; signal from the drive circuit, which had been controlled by the sequences
chaosl or chaos?2. When ¢ crossed 0 in the negative direction, the value of y; was stored
for the response control sequence. The response control sequence when the drive circuit
was controlled by chaos! was responsel, and when the drive was controlled by chaos2, the
response control sequence was response2.

During control, the response circuits were driven by the recorded x; signal from the drive
circuit, which had been controlled by the sequences chaos! or chaos2. When ¢ crossed
0 in the negative direction, the difference between y; and the corresponding signal from
the matching auxiliary circuit, y1,, was compared to a fixed threshold in the computer. If
ly1 — y14| > 0.3, it was assumed that the response circuits were not synchronized, and the
phase of the response control sequence was advanced by 1. If the difference was less than
the threshold, the control phase was not advanced. For either result, the computer then set
y; for the circuit to the next value in the response control sequence, after which the response
control sequence phase was advanced. The sequences chaos! and chaos?2 corresponded to 5

cycles of the slow part of the circuit, so each control sequence had a length of 5.
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FIG. 6: Plot showing synchronization of the response circuit (y;) and the auxiliary response circuit
(y1a), confirming generalized synchronization when the correct response control sequence for a

particular drive signal is used.

Figure 6 is a plot of y1, vs. y; when the arbitrary waveform generator is playing back
the drive signal z; from a drive circuit controlled by chaos! and the response circuit is being
controlled by the control sequence responsel. There are some occasional small departures
from synchronization, but most of the time the 2 auxiliary systems are synchronized. Figure
7 is the same plot when the drive circuit was controlled bychaos?2 but the response control
sequence was still responsel. There is a definite loss of synchronization, so the pair of
response circuits are able to recognize the difference between chaos! and chaos2.

This circuit can still recognize the difference between chaos! and chaos2 when noise is
present. The arbitrary waveform generator was used to produce a Gaussian white noise
signal with a bandwidth of 50 kHz, which was added to the drive signal x; from a drive
circuit controlled by chaosi. Figure 8 shows y;, vs. y; when the drive circuit was controlled
by chaos! and noise was added to x;, with a signal power to noise power ratio of 0.7 (-1.4 dB).
The response system was controlled by the control sequence responsel . The synchronization
is still recognizable when fig. 8 is compared to fig 7, where there was no noise, but the wrong
control sequence was used. The cross correlation at 0 time lag between y; and y;, when
the wrong control sequence was used but no noise was present was 0.93, while the cross
correlation when the correct control was used but the signal to noise ratio was 0.7 was 0.98.

The effect of interference from another chaotic signal on the response circuits was also

tested. A second arbitrary waveform generator was used to play back the transmitted signal
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FIG. 7: Plot showing a lack of generalized synchronization between the response circuit (y;) and

the auxiliary response circuit (y;,) when a response control sequence that does not correspond to

the drive signal is used.

FIG. 8: Plot of the auxiliary response circuit (y1,) vs. the response circuit (y;) showing that

generalized synchronization is maintained even when additive Gaussian white noise larger than the

drive signal is present.

from a drive circuit controlled by chaos2. This second transmitted signal, z;2, was added to
the z; signal from a drive circuit controlled by chaosi. When both z; and ;2 had the same
amplitude, the cross correlation between y; and y;, was 0.96. When the z,2 signal amplitude
was 1.5 times the amplitude of the x; signal, the cross correlation dropped to 0.91, lower
than the value when the wrong drive signal was used. The response circuits can reject some

interference, but they have trouble if the interference is too similar to the driving signal.
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VI. CONCLUSIONS

Reference [11] also uses chaos control to synchronize 2 chaotic systems, but the content
of that paper is very different from this work. In [11], the symbol sequence for the chaotic
trajectory is not known at the receiver, but is communicated through the channel. Refer-
ence [11] uses the properties of these symbol sequences to determine the maximum possible
precision of synchronization for identical, lag, or anticipated synchronization.

In the present work, the symbol sequence corresponding to the drive system trajectory
is already known at the receiver. This information is used to determine which trajectory is
being sent. The technique is this paper is similar to CDMA [23], where different orthogonal
sequences are used to identify different transmitters.

The control and synchronization procedure should make it easier to design multiple drive-
response pairs, as it is not necessary to build a completely different chaotic circuit for each
pair. Since the spectra of the different drive systems are the same (for a long enough
trajectory), it should also be possible to make better use of frequency space by using the
same frequency band for many different drive-response pairs.

In the circuit experiments, the ability of a controlled response system to recognize a
particular signal in the presence of noise or interference was tested. It has been shown in
previous work that the noise robustness of similar 2 frequency circuits may be improved
by increasing the separation between fast and slow frequencies [26]. Resistance to chaotic
interference was not as good, but designing the chaotic drive system so that different output
sequences were less similar to each other should increase the resistance to this type of
interference. The control techniques used here also allow greater freedom in designing the

transmitter, since the receiver no longer has to be a replica of the transmitter.
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