
 
Abstract--Cyclostationary signals have an expectation value
which varies periodically in time. Chaotic signals that have
large components at some discrete frequencies in their power
spectra can be cyclostationary. The cyclostationarity persists
even if the discrete frequency components are removed from
the chaotic signal, leaving a signal with a purely broad band
frequency spectrum. In this paper a communications system is
created by modulating information onto the periodic parts of a
chaotic signal and then removing the periodic parts from the
frequency spectrum. At the receiver, the periodic parts of the
spectrum are restored by means of a nonlinear operation. This
system is demonstrated both in simulations and real circuits,
and the performance of this system is measured in simulations.
Finally some of the reasons why such a scheme might be useful
are discussed.
Index Terms--chaos, cyclostationarity, communications

I. INTRODUCTION

Chaotic circuits are natural generators of broad band
signals, so there has been research into applying chaotic
circuits to spread spectrum communications [1-13]. Most of
these communications methods depend on having a
synchronized chaotic receiver or at least some sort of
information about the chaotic signal at the receiver.
Difficulties in synchronizing chaotic receivers make most
of these techniques impractical for multi-user
communications systems. In addition, much research has
focussed on the possible security of chaotic
communications systems.

There are still many applications for nonsecure spread
spectrum communications. IEEE standard 802.11 sets aside
certain frequency bands where no license is necessary to
operate transmitters. Instead, regulations have been placed
on the power spectra of the signals emitted by the
transmitters so that the unlicensed signals do not interfere
with other users. Essentially, the power spectra must be flat
to within certain limits.

It is shown in this paper that some  chaotic signals are
cyclostationary [14] , which means that the signal can be
divided into a stationary part and a nonstationary part, with
the expectation value of the nonstationary part varying
periodically in time. I demonstrate below that the
cyclostationary properties of chaotic signals may be used to
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encode information. One method for detection of a
cyclostationarity in a signal is to calculate the spectral
coherence, which is essentially the same as calculating the
autocorrelation function of the Fourier transform of the
signal, but substituting frequency shifts for time lags. If two
frequencies are coherent (or phase locked), then the spectral
coherence will show a peak when the first term in the
spectral coherence calculation corresponds to the first
frequency and the second term corresponds to the second
frequency. By the Wiener-Khintchine theorem, the
autocorrelation of the Fourier transform for zero frequency
shift is just the Fourier transform of the signal squared, so
simply squaring the chaotic signal may be enough to
observe cyclostationarity. I demonstrate below that some
chaotic signals are cyclostationary. The power spectra of
these signals have large components at certain discrete
frequencies, but even after removing the parts of the signal
at these frequencies, the cyclostationary property remains.
The cyclostationarity may be used to recover a signal
modulated onto the periodic parts of the original chaotic
signal.

II GENERAL METHOD

The method I will demonstrate below is as follows: Choose
a nonautonomous chaotic circuit, or an autonomous circuit
such as the Rossler system which has large peaks in its
power spectrum. Information is modulated onto the narrow
band frequency in the power spectrum, by some method
such as phase modulation. If the chaotic attractor persists
over a broad range of parameters, it may also be possible to
use frequency or amplitude modulation. One (or more)
chaotic signal from the chaotic circuit is chosen as a carrier
signal, and the periodic components are suppressed, either
through filtering or outright subtraction. Because the
chaotic signal is cyclostationary, the periodic parts are still
present in the statistical properties of the chaotic signal, so
at the receiver the periodic components are restored by
some nonlinear operation, such as squaring the chaotic
carrier signal. The phase and other characteristics of the
periodic component may then be extracted from the chaotic
carrier after the nonlinear operation. Acronyms seem to be
very popular in this field, so I will call the method
presented here “chaos cyclostationary keying” (CCK).

When a binary phase modulation is used on the periodic
component of the chaotic signal, chaos cyclostationary
keying (CCK) is in essence binary phase shift keying

Using the Cyclostationary Properties of Chaotic
Signals for Communication

T. L. Carroll



(BPSK) except that the narrow band phase modulated
signal has been encoded on a chaotic signal for
transmission. The properties of CCK will be similar to
BPSK, except that there is some loss of performance when
the periodic signal is converted to chaos and backs

III. DUFFING CIRCUIT EXPERIMENTS

A. Transmitter

The first experiments were conducted with a circuit that is
similar to the Duffing system [15]. Figure 1 is a schematic
of this circuit, while Fig. 2 is a plot of an attractor from this
circuit. This same circuit was used in previous work [16,
17], although in the previous work there was an error in the
equations describing the circuit. The set of equations
describing the circuit are
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The periodic driving signal is θ, with a frequency

ω=(2π)×780 rad/sec, and the phase of the driving signal is

given by φ. The time constant α was set to 104 to simulate

the same time scale as the circuit. The boxes labeled f and g
were piecewise linear diode function generators whose
outputs were described by f(x) and g(x) in eq. (1). The
power spectrum of the y signal from the circuit is shown in
Fig. 3(a).

The power spectrum of the y signal in Fig. 3(a) shows large
narrow-band components at the driving frequency of 780
Hz and at its harmonics. These narrow-band components
were removed by subtraction. The component at 780 Hz
was removed by taking the 780 Hz driving signal, passing it
through an all-pass filter to generate the appropriate phase
shift, using an amplifier to scale the phase shifted signal to
the proper amplitude, and subtracting from the y signal. The
main nonlinearity in this circuit is cubic, so the narrowband
component at the second harmonic frequency of 1560 Hz
was not large compared to the broad-band background, but
this harmonic was also removed to insure that the received

signal was not simply caused by some small term at this
frequency.

A periodic signal at the second harmonic frequency of 1560
Hz was generated by filtering the y signal with a 4th order
bandpass filter centered at 1560 Hz and then using this
signal to drive a phase-locked loop. The phase-locked loop
was constructed from a sample and hold amplifier, an
Intersil ICL8038 function generator chip, and a low pass
filter. The phase-locked loop output was phase shifted and
scaled by an appropriate amount and subtracted from the y
signal to generate the yf  signal, which is the y signal with
the narrow band parts removed. The power spectrum of the
yf  signal is shown in Fig. 3(b). For the circuit, only the
driving frequency and the second harmonic were removed,
although in the simulation shown later, more of the
harmonics were removed. The yf  signal could be
transmitted directly or modulated onto a carrier signal for
transmission.

B. Cyclostationarity

Although the narrow band components of the y signal have
been removed, they may still be reconstructed from the
broad band part of the chaotic y signal. The concepts behind
the signal reconstruction may be explained simply by
looking at a sum of periodic signals. Consider a sum of 2
sine waves, s = sine(f1)+sine(f2). If we perform a nonlinear
operation on these signals, such as cubing (I use cubing as
an example because the circuit I am describing here has a
cubic nonlinearity),  then sum and difference frequencies
are produced as the sine waves are modulated together: s3 ∝
sin(f1) – sin(3f1) – sin(f1-2f2) +….  It is then possible to
remove terms that contain only factors of f1, such as sin(f1)
or sin(3f1) etc., to produce the signal s3

f .

 At the receiver, another nonlinear operation may be
performed on the received signal, such as squaring, to
produce (s3

f)
2 ∝  cos(2f1) + cos(4f1) + other terms. Terms

containing only f1 have been restored, so it is possible to
detect variations in the phase of the signal at frequency f1.

The actual chaotic y signal contains many frequencies, but
because of the nonlinearities in the chaotic circuit, the
frequencies are mixed together as described above. There
are detailed discussions of cyclostationarity in the literature
[14, 18], but a detailed understanding is not required to
understand the signal recovery method here.

Cyclostationarity may be detected in a signal by calculating
the autocorrelation of the power spectrum [18]. If x(t) is a
signal and X(f) is its Fourier transform, then the
autocorrelation of the power spectrum is
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A large cross correlation at a particular frequency in the
Fourier spectrum indicates the presence of cyclostationarity
(an analogous result holds for discrete signals). From the
Wiener-Khintchine theorem, one may equivalently simply
take the square of x(t), and search for large components at
discrete frequencies.

D. Signal Detection

In order to detect information on the signal yf  from the
circuit of Fig. 1, the signal is squared. The power spectrum
of (yf )

2 is shown in Fig. 4. The narrow band component at
1560 Hz is obvious in the power spectrum. Cubing yf

would produce a signal at the driving frequency of 780 Hz,
but the signal to noise ratio of the narrow band component
was not as good as when yf  was squared.

The signal (yf )
2  was then filtered with a second order

bandpass filter with a center frequency of 1560 Hz prior to
phase detection. In order to detect the phase of the filtered
(yf )

2 at 1560 Hz, a local oscillator was also run at 1560 Hz
(there was some slight mismatch between oscillator
frequencies in the transmitter and receiver, but a small
mismatch will not greatly affect the results). The signal (yf

)2 was an input for a sample and hold amplifier, which was
strobed with the 1560 Hz signal from the local oscillator.
The output of the sample and hold amplifier was low pass
filtered to form the phase error signal ∆.

The simplest way to encode information onto the chaotic
signal yf  was to modulate the phase of the periodic signal
driving the circuit (essentially a form of BPSK). We know
that the signal in the detector will be squared, so using the
identity sine(ωt + φ)2 = 0.5(1- cosine(2ωt + 2φ)) tells us
that the largest possible signal at the receiver will come
when the periodic driving signal phase is modulated by ±
450

 (a phase shift of 900 in the transmitter is equivalent to a
phase shift of 1800 in the receiver). Figure 5(a) shows the
phase modulation signal in the transmitter, while 5(b)
shows the phase error signal ∆ from the receiver when the

periodic driving signal at the transmitter is phase modulated
by ± 450 at a frequency of 10 Hz. Figure 5 shows that it is
possible to detect the phase of the periodic driving signal
even though the periodic parts of the transmitted signal
have been removed. The phase error signal could also be
used to phase synchronize a periodic oscillator in the
receiver in order to build a synchronized chaotic response
circuit. In a later section of this paper numerical simulations
will be performed in order to measure the bit error rate of
this communications system.

III ROSSLER CIRCUIT EXPERIMENTS

The Duffing circuit used above was nonautonomous. Some
autonomous chaotic circuits have strong narrow band
components in their frequency spectra, so it should be
possible to remove the periodic parts and still recover their
phase, as with the nonautonomous circuit. To test this idea,
the piecewise linear Rossler (PLR) circuit shown in Fig. 6

was used [19]. The PLR circuit may be described by the
equations
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where α = 104 s-1, the phase control coupling constant cφ =

0.025, A = 3.15, φ is varied in order to control the PLR
circuit phase, and ωc  is set to the peak frequency in the
PLR spectrum, which is 1.16 kHz. The term multiplied by
cφ in the PLR circuit is used to control the phase of the
narrow band component of the PLR frequency spectrum
through phase synchronization [20]. Figure 7(a) shows the
power spectrum of the x signal from the PLR circuit.

Rather than using phase-locked loops, the periodic
components were removed from the PLR x signal by
filtering and subtraction. Second order bandpass filters were
used to isolate the components of the PLR x signal at 1.16
and 2.32 kHz, and the outputs of the bandpass filters were
subtracted from the x signal to produce the signal xf . The
power spectrum of xf  is shown in Fig. 7(b). There is still
some evidence of narrow band signals at 1.16 and 2.32
kHz, but their amplitude is down by a factor of 1000. One
advantage of using filters instead of phase-locked loops to
remove the periodic components is that the filter will still
remove the periodic component if its amplitude changes,
allowing for amplitude modulation of the periodic
component. The phase-locked loop, on the other hand,
compensates better for small variations in the frequency of
the periodic component.

Figure 8 shows the power spectrum of (xf )
2 . In this case,

there are peaks at both the fundamental of 1.16 kHz and the
second harmonic of 2.32 kHz, possibly because these
signals were not completely removed from xf  . Once again,
the phase of the second harmonic at 2.32 kHz is detected
when the phase of the 1.16 kHz frequency in PLR circuit is
varied by using phase synchronization. Figure 9(a) shows
the phase modulation signal, while Fig. 9(b) shows the
phase error signal ∆, demonstrating that it is possible to

recover the phase of the periodic part of a chaotic signal
from an autonomous chaotic circuit when the periodic part
has been suppressed. In Fig. 9, the phase is modulated at a
frequency of 1 Hz.

IV. SIMULATIONS

When used as a communications system, it is most likely
that a whole set of nonautonomous circuits would be used,
with each circuit having a different drive frequency. It
would be possible to build many copies of the same circuit



and simply rescale the time constants ( α in eq. (1) ) so that

every transmitter-receiver pair operated at a slightly
different frequency. This method would amount to using
frequency division multiplexing with binary phase shift
keying (BPSK), except that the periodic carrier signal is
spread with the chaos to prevent it from interfering with
other transmitters.

The circuit described by eq. (1) was numerically simulated
(using a Runge-Kutta integrator with a time step of 5 × 10-5

s.) to determine its bit error performance when a simple
phase shifting encoding technique was used. For the
simulation, the drive frequency and the next 4 harmonics
were subtracted from the y signal to generate the
transmitted signal ys

y y a is i
i

i= − ∑ −( ) +
=1

5
sin θ φ η                            (4)

where η  is an additive noise term, θ  is defined in eq. (1),

and the parameters aI  and φI  are defined in Table 1. An
information signal was encoded onto the chaotic signal by
varying the drive phase φd  between ± 1 radian at a
frequency of 20 Hz.

At the simulated receiver, ys was squared and filtered with a
bandpass filter with a center frequency of 1560 Hz:
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where u was the filter output and r1=102,000 ohms,
r2=204,000 ohms, and r3=513 ohms.

The next step in the receiver was to determine the phase of
u.  The signal su was generated, where su =1 for u  0 and s u

= -1 for u < 0. This signal su was used to strobe a sinusoidal
signal at 1560 Hz:
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where ω is the same as in eq. (1) and δ is produced by
sampling sin(θr) when su crosses zero in the positive
direction. The final phase error signal is ∆, which is the low
pass filtered version of δ.  The value of ∆  is set to 0 at the

start of each bit and the final value of ∆  at the end of each
bit is used to determine whether a binary 1 or 0 was sent.

A. Comparison to BPSK

Figure 10 shows the probability of bit error Pb as a function
of (bit energy)/(noise power spectral density) when eq. (1)
is used to simulate a transmitter and the added noise is
Gaussian white noise. The bit error performance is not as
good as simple BPSK, but that is to be expected, as
producing the chaos and detecting the periodic signal will
have some effect on performance. The transmitted signal
will interfere less with other signals than a periodic BPSK
signal will, so something is gained by using chaos. The
performance shown in Fig. 10 is probably not ideal since
the bit error probability shown here does depend on the
bandpass filter in the receiver, which is not ideal.

For comparison, the solid line in Fig. 10 shows the bit error
probability of BPSK, while the dashed line shows the
probability of bit error for a PSK signal with a phase shift
of ± 45°. These lines are calculated from analytic formulas

[21], so they are ideal. The squares in Fig. 10 are from a
calculated bit error rate for Differential Chaos Shift Keying
(DCSK) [22-24], which is another asynchronous chaotic
communication method. The DCSK curve appears slightly
better, but it should be noted that the performance of DCSK
will be worse for signal to noise ratios less than 0 dB [24].
For the DCSK data in Fig. 10, the SNR corresponding to
Eb/N0 = 16 dB is estimated to be +0.69 dB [24]; for  the
CCK data in Fig. 10, the SNR for Eb/N0 = 16 dB was -10.9
dB (with a bit length of 0.05 s), although, as with DCSK,
the bit error probability curve will shift for different bit
lengths, so CCK is not noise robust under the definition of
Abel [24]. CCK is not noise robust because the noise is also
squared when the received signal is squared.

Other transmitter-receiver pairs could be added by using
frequency division multiplexing. The effect of interference
from another transmitter with the same power is shown in
Fig. 11. The solid circles show the probability of bit error
Pb when a signal from a second Duffing system has been
added to the chaotic carrier signal. The interfering signal
comes from a Duffing system that is identical to eq. (1)
except that the time constant α  and the frequency ω  have
been multiplied by a constant. The x axis in Fig. 11 shows
the driving frequency for the interfering signal divided by
the driving frequency for the chaotic system producing the
carrier signal. The frequency range of this plot is limited to
values close to 1.0 because the bandpass filter in the
receiver supresses interfering signals outside of this range.

The interference acts like a small constant noise signal
outside the 20 Hz bandwidth  of the information signal, and
only causes significant interference when the interference is
within the information bandwidth. The bandwidth
efficiency of this chaotic communications method should
be about the same as for BPSK.

Periodic interference will also affect the chaotic carrier
signal. Also shown in Fig 11 (open squares) is the bit error
rate caused by a sinusoidal interference signal with the
same power as the chaotic carrier signal. The interference
from a sinusoidal signal is negligible outside of the 20 Hz
information bandwidth. The effect of sinusoidal



interference could be further reduced by filtering the
received signal with a notch filter which removes signal
components at the driving frequency. The peak power in the
chaotic carrier power spectrum is a factor of 10 less than
the peak power in a sinusoidal signal of the same total
power; a better choice of chaotic circuit could reduce this
ratio even more.

V. CONCLUSIONS

It is possible to use the cyclostationarity properties of chaos
to generate a broad-band carrier signal which has
performance characteristics similar to BPSK, with only a
small loss involved in converting the signal into chaos and
back (“chaotic cyclostationary keying”, or CCK). The
advantage of the chaotic signal is that it has a relatively flat
spectrum, and therefore will not interfere with other signals,
making it useful for unlicensed communications
applications. There are other methods for producing broad
spectrum communications signals, but CCK is very simple,
and therefore potentially very inexpensive.
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FIGURE CAPTIONS

Figure 1 (a). Chaotic Duffing circuit described by eq. (1).
R1= R3=R4= R5= R6=10kΩ, R2= 39.2 kΩ,
R7=R10=R12=R13=R14=R16= R17= R18 =100 kΩ,

R8=R9=R18 =1 MΩ, R15=5.2 kΩ , C1=C2= C3= 0.001 µF.

The box labeled f corresponds to the nonlinear function
f(x), while the box labeled g corresponds to the nonlinear
function g(x). All op amps are type 741 or equivalents.

(b) Circuit used to generate the function g(x).
R1=R2=R3=R4=R9=100 kΩ. R5=R7=680 kΩ. R6=R8=2

MΩ. P1=P3=20 kΩ poteniometer. P2=P4=50 kΩ
poteniometer.  The diodes are all type 1N485B. The
poteniometers are used to match different  circuits to each
other. The amplifier is type 741.

(c) Schematic of circuit used to create f(x) function. R1= 10
kΩ. R2=490 kΩ.  R3=20 kΩ. R4=R5=R6=100 kΩ.

Figure 2. Attractor for the circuit of Fig. 1.

Figure 3. (a) Power spectrum of the y signal from the circuit
of Fig. 1. (b) Power spectrum of the y signal from the
circuit of Fig. 1 after the periodic parts have been removed.
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Figure 4. Power spectrum of the signal (yf)
2  (yf  is the y

signal from the circuit of Fig. 1 with the periodic parts
removed).

Figure 5. (a) Phase modulation signal s used to modulate
the periodic signal driving the circuit of Fig. 1. The phase
modulation rate is 20 Hz. (b) Phase error signal ∆ measured

at the receiver.

Figure 6. Piecewise linear Rossler (PLR) circuit described
by eq. (5).

Figure 7 (a) Power spectrum of the x signal from the circuit
of Fig. 6. (b) Power spectrum of the x signal from Fig. 6
when the periodic parts have been supressed by filtering.

Figure 8. Power spectrum of the signal (xf)
2  (xf  is the y

signal from the circuit of Fig. 6 with the periodic parts
supressed).
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Figure 9. (a) Phase modulation signal s used to modulate
the phase of the periodic part of the chaotic signal from the
PLR circuit of Fig. 6. The phase modluation rate was 1 Hz.
(b) Phase error signal detected at the receiver.

Figure 10.Circles show the probability of bit error Pb as a
function of (energy per bit)/(noise power spectral density)
Eb/N0 for chaos cyclostationary keying (CCK) with added
white Gaussian noise. The solid line is the probability of bit
error for BPSK, the dashed line is Pb for PSK with phases ±
45°, and the squares are a calculated Pb for DCSK.

Figure 11. Probability of bit error Pb as a function of
interference frequency (normalized by driving frequency).
The dark circles are for interference from another CCK
transmitter, while the open squares are for interference from
a purely sinusoidal signal.

i ai φi

1 0.6516 0.0943
2 0.1407 0.3741
3 0.2027 1.9559
4 0.0662 0.7032
5 0.0716 2.4081

Table 1. Amplitudes aI  and phases φI  of the driving
frequency ( i=1 ) and its next  4 harmonics ( i=2-5 ) from
the y signal in the simulation of eq. (1). These constants
were determined from the Fourier transform of a long time
series.
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Table I.

i ai φi

1 0.6516 0.0943

2 0.1407 0.3741

3 0.2027 1.9559

4 0.0662 0.7032

5 0.0716 2.4081


