
                                                                     1

Using Unstable Periodic Orbits to Overcome Distortion in
Chaotic Signals

T. L. Carroll
Code 6345, US Naval Research Lab, Washington, DC 20375

Abstract: Proposals to use chaos for communications have been hindered by

the fact that broadband chaotic signals are distorted by narrow band or frequency

dependent communications channels. I show in this paper how the unstable periodic

orbits from a chaotic attractor may be used to estimate the parameters of a filter that has

acted on a signal from that attractor and estimate the chaotic signal, even when additive

noise larger than the chaotic signal is present.
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I. INTRODUCTION

The broadband nature of chaotic signals has led many researchers to consider

them as a new type of signal for communications [1-9]. While the broadband nature of

chaotic signals is attractive for applications in communications, it is also a drawback.

Broadband signals are sensitive to communications channels with narrow bandwidth or

frequency dependent distortion, especially if the distortion is changing in time. In

measuring signals from chaotic experiments, bandwidth of the instrumentation is also

important. There has been some work on either narrowing the bandwidth of chaotic

signals [10, 11] or using adaptive filters to compensate for varying channel characteristics

[9, 12]. These methods use self-synchronizing chaotic systems, so they are fairly sensitive

to additive noise.

In this paper, I describe a method of correcting for channel distortions that is less

sensitive to added noise. This method does not use chaotic synchronization, but instead

depends on estimating the original chaotic signal by comparing to a set of possible fixed-

length sequences built up from the unstable periodic orbits (UPO's) for the chaotic

attractor [13, 14]. The method described in this paper does require a large amount of

computation, so it may not be truly practical for communications yet, but there may be

ways to speed up the computation.

II. UPO'S AND SIGNAL ESTIMATION

I present here only a brief summary of a technique developed in [13, 14]. This

technique depends on the fact that a chaotic attractor consists of an infinite number of

unstable periodic orbits (UPO's). If one knows which UPO the attractor is on and how far

along the UPO the attractor is, then one knows the current value of all chaotic signals

from the attractor. The method of [13, 14] estimates which UPO is present based on a

signal from the attractor and advance knowledge of the UPO's. It is not necessary to
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know all the UPO's for the attractor (there are an infinite number); many dynamical

quantities on the attractor may be calculated from only the lowest period orbits [15-22].

The individual UPO's are used to construct UPO sequences with a fixed length. A

crude version of this construction is presented in [13]; the method is made more

systematic in [14]. Various prediction criteria are used to decide which UPO may follow

which other UPO on the attractor. A set of fixed length UPO sequences is constructed

which approximates all possible chaotic motions on the attractor. The fixed length UPO

sequences are compared with an equal length segment of a time series from the chaotic

attractor. The UPO sequence with the largest cross correlation with the time series

segment (considering all possible lags) is taken as the best approximation to the time

series segment.

It turns out that most of the UPO sequences that may be built are rarely or never

the best approximation to the time series, so the set of UPO sequences may be truncated.

It is known that chaotic systems have "grammars" of possible motions [23, 24].

III. CORRECTING FOR DISTORTION

In this work, the UPO sequences are used to extract information from a chaotic

signal that has been filtered by a 2nd order band pass filter. The original chaotic signal is

encoded with binary information by multiplying it by ± 1. The signal is passed through a

digital version of a second order bandpass filter. The signal is then compared with a set of

UPO sequences which are filtered with a similar band pass filter. It is assumed that the

parameters of the band pass filter are not known, so as each UPO sequence is compared

to the incoming filtered chaotic signal, the filter parameters are varied to maximize the

cross correlation between the filtered UPO sequence and the incoming signal. Once

again, the UPO sequence with the largest cross correlation is taken as the best

approximation to the incoming signal, and the filter parameters estimated for that

sequence are taken as the best estimate for the filter. The information signal (± 1) may
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then be estimated based on whether or not the largest cross correlation is positive or

negative.

Fitting the filter parameters is time consuming, but it does not have to be done for

each time interval. Depending on how fast the channel is changing, the filter parameters

need to be fit only occasionally.

IV. CHAOTIC SYSTEM

The chaotic system used here is a modified version of Sprott's system B [25]. The

equations for this system were
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The equations were integrated with a 4th order Runge-Kutta integrator with a time step of

0.2 s [26].

The z signal was multiplied by s = ±1 to create the modulated carrier signal zs .

The modulated carrier signal was then filtered by a digital filter with the transfer function

A
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Ω Ω1 2/
                                                      (2)

where the normalized frequency Ω = ω /ωc ,  ωc was the center frequency of the pass

band and Q was the ratio of center frequency to bandwidth. Figure 1 (a) shows the power

spectrum from a long time series of the z signal (no modulation) from eq. (1). Figure 1 (b)

shows the amplitude of the transfer function A . The dotted line shows the transfer

function for Q = 0.5, while the solid line shows the transfer function for Q = 2.0 (ωc = 0.5

in both cases). The transfer function was used to calculate the coefficients for the digital

filter. The filtered signal was zf . Figure 2 shows the information signal s , the modulated
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carrier signal zs , and the filtered carrier signal zf  when Q = 2 and ωc = 0.5. The value of

s was switched every 256 points (about 4 cycles)

V. ESTIMATING THE CARRIER SIGNAL

A set of 1162 possible UPO sequences with length about 4 cycles (256 points at

0.2 s/point) for Sprott's system B was produce by the methods described in [14]. To start

the process of decoding the information signal, each of these UPO sequences in turn was

filtered by a digital filter with a transfer function given by eq. (2). When detecting the

first segment of the time series of zf , a series of 512 points was passed through the digital

filter. The first 256 points were 0, while the next 256 points came from one of the UPO

sequences. For later segments of zs ,  the first 256 points of the filtered time series came

from the UPO sequence corresponding to the best fit to the previous segment of zs

(multiplied by the estimated value of s, ±1). The second 256 points of the filtered time

series came from one of the 1162 UPO sequences. The sequences were filtered in pairs to

account for leakage of the previous sequence into the next sequence, caused by the

filtering.

The UPO sequences were searched as follows: first, one of the UPO sequences

was chosen and filtered. The cross correlation between the filtered UPO sequence and an

equal length segment from zf  was calculated for all possible lags, and the largest value of

the cross correlation was saved. The parameters ωc and Q were then varied by a linear

optimization routine [26] in order to maximize the largest cross correlation between the

UPO sequence and zf .  This procedure was repeated for each UPO sequence. The

sequence with the largest cross correlation was taken as the best approximation to zf , and

the filter parameters that maximized the cross correlation for this sequence were taken as

the parameters of the filter.

Once the filter parameters had been estimated for the initial 256 point segment of

zf , it was not necessary to estimate them again for the next segment. If the channel

parameters do not change too quickly, it is not necessary to perform this estimation very
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often. If the channel parameters are changing, one could monitor the cross correlation

between zf  and the best UPO sequence, and recalculate the filter parameters if the cross

correlation drops by more than a certain amount.

Other adaptive channel equalization methods attempt to invert the filtering

characteristics of the channel [9, 12]. Inverting the filter would work here, but would also

make the estimation process more sensitive to noise.

Figure 3 shows the result of the detection process as the Q of the filter that

produces zf  is varied. The filter center frequency ωc is fixed at 0.5 The black circles

show the probability that an error is made in estimating the value of the information

signal s  (Pb) when both filter parameters are estimated as described above. The

probability of making a bit error becomes larger as the filter Q increases (the bandwidth

becomes narrower). For comparison, the open squares in Figure 3 show the probability of

bit error when no filter is used on the UPO sequences in the receiver. The probability of

bit error is higher by as much as 2 orders of magnitude when no filtering is used at the

receiver. Clearly, the adaptive filtering at the receiver improves the reception of the

chaotic carrier signal.

The highest probability of bit error for a binary scheme should be 0.5; either + or -

is equally possible. The probability of bit error in Figure 3 is seen to exceed 0.5. This

means that the receiver is estimating that the bit present is the opposite of what was sent.

It should be possible to come up with a communications scheme that is not affected by

this phase flip (the carrier signal itself could be inverted during transmission), so

estimating the opposite bit is not really an error. Figure 4 shows the same information as

Figure 3, but all probabilities over 0.5 are subtracted from 1. For the unfiltered case, the

probability of bit error actually goes through a maximum near Q = 1.2. The maximum

probably comes because different frequencies in the carrier are being phase shifted by

different amounts as the filter Q changes. At some phase shift, it is not possible to tell if
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the carrier signal is rightside up or upside down, but shifting the phase farther makes the

carrier appear inverted.

In figures 3 and 4, there is considerable scatter in the probability of bit error for

the adaptively filtered signal. This is caused by inaccuracy in estimating the filter

parameters. Figure 5 shows the estimated Q  (Qf ) for the filter vs. the actual Q. The solid

line is at 45 degrees (Qf = Q ). The estimated Q is close to the actual Q for smaller values

of Q , but there is considerable departure at larger values.

Figure 6 shows the estimated value of ωc ( ωf ) as a function of the filter Q . The

solid line is the actual value of ωc , 0.5. Once again, as Q increases, there is considerable

departure of ωf  from the actual value of  ωc.

VI. EFFECTS OF NOISE

In order to be useful, a communications system must work in the presence of

noise. The method described above was evaluated when Gaussian white noise was added

to the modulated chaotic time series zf  before filtering. The modulation was detected as

above by computing the cross correlation with possible UPO sequences and fitting the

filter parameters from a model of the filter. Figure 7 shows the probability of bit error Pb

as a function of the energy per bit Eb divided by the noise power spectral density N0. The

energy per bit is found by multiplying the average signal power by the length of time

required to send one bit. The arrow on the Eb/N0 axis in Fig. 7 corresponds to an

unfiltered noise RMS equal to the unfiltered signal RMS. The filter Q was set at a

constant value of 1.0, while the filter frequency ω  = 0.5.

The solid circles in Fig. 7 represent the probability of bit error when the UPO

sequences were filtered with a digital filter whose parameters were estimated by the

methods described above. It can be seen that the probability of bit error is lower when the

noise RMS is less than or equal to the signal RMS. The open squares in Fig. 7 represent

the probability of bit error when no filter is used to compensate for filtering by the

channel. The adaptive filtering described above clearly improves the probability of bit
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error even when noise as large as the transmitted signal is present. It was also noted that

the estimates of the filter parameters were better for lower levels of noise. It was shown

in [14] that the probability of bit error for a given noise level was lower when longer

UPO sequences were used.

VII. CONCLUSIONS

It was seen previously that it is possible to approximate chaotic time series with

UPO sequences. As long as one has already digitized the chaotic signal in order to fit to

the UPO sequences, it makes sense to apply other signal processing techniques to

improve the received signal. It has been shown here that if the transmission channel acts

as a filter, and one has a model of that filter, it is possible to estimate the filter parameters

by comparing to the UPO sequences, and use the filter estimate to decrease the

probability of bit error in the communication system.

Other than communications, these techniques might also be useful for data

analysis, such as identifying the presence of a particular attractor when noise or filtering

affects the detection process. It is necessary, of course, to have access to the noise-free

attractor beforehand in order to calculate the UPO's. There are computational issues that

make the application of the techniques described in this paper to communications

difficult. Finding the best fit UPO sequence by calculating cross correlations with all the

other sequences is slow, so some better method of searching for the best sequence is

necessary. If such a technique can be found, however, these methods do have much

potential for improving communications technology.
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Figures

Figure 1. (a) Power spectrum P for a long time series of the unmodulated z  signal

from eq. (1). (b) Amplitude of the transfer function A from eq. (2). The dotted line is A

for Q = 0.5 and ωc = 0.5; the solid line is for Q = 2.0. and ωc = 0.5.
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Figure 2. (a) Information signal s which modulates the chaotic carrier. (b)

Modulated chaotic carrier signal zs (before filtering). (c) Filtered modulated chaotic

carrier signal zf  (Q = 2.0 and ωc = 0.5).
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Figure 3. Probability of bit error Pb as a function of filter Q. The open squares are

when no correcting filter is used on the UPO sequences in the receiver; the solid circles

are when the UPO sequences are filtered with a filter whose parameters are adaptively

determined.
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Figure 4. The same data as Fig. 3, but points over 0.5 have been subtracted from

1.
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Figure 5. Adaptively determined filter parameter Qf  as a function of the actual

filter parameter Q. The line represents a perfect fit, Qf = Q .
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Figure 6. Adaptively determined filter parameter ωf  as a function of the actual

filter parameter Q. The line represents the actual filter parameter ωc = 0.5.

Figure 7. Probability of bit error Pb as a function of energy per bit Eb divided by

noise power spectral density N0 when Gaussian white noise is added to the chaotic

carrier. The open squares are when no correcting filter is used on the UPO sequences in

the receiver, the solid circles are when a correcting filter is used. The arrow indicates

where the RMS of the unfiltered noise is equal to the RMS of the unfiltered carrier signal.


