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Abstract: Magnetoelastic materials have a strong coupling between strain and

magnetization, so applying a magnetic field to a magnetoelastic material can change its

shape. This coupling leads to interesting dynamics. We have studied the dynamics of a

wide ribbon of Metglass  2605sc which was driven by a magnetic field. The ribbon was

suspended as a pendulum in a set of Helmholtz coils, which provided both DC and AC

magnetic fields. Laser light was reflected off the ribbon to measure its angular

displacement. Two points on the ribbon could be simultaneously illuminated, and one of

the laser beams could be scanned over the ribbon. We observed quasiperiodic

bifurcations in the motion of the ribbon, and characterized the spatial aspect of the

motion with some recently developed statistics.



                                                                          1

1. Introduction

The use of a magnetoelastic ribbon to study nonlinear dynamics is quite well

known [1, 2]. Magnetoelastic materials are easy to work with, and because they are

magnetic, one may drive them without directly touching the material. Most previous

experiments with magnetic ribbons used narrow ribbons which could be approximated as

1-dimensional; in this work, we use a wider ribbon so that we may look for spatial

effects. We do see many nonlinear effects, such as foldover in a mechanical resonance

peak, and interesting quasiperiodic bifurcations. We compare the dynamics of a

magnetoelastic ribbon to the dynamics of a nonmagnetoelastic ribbon to see what effect

the magnetoelasticity has on the ribbon behavior.

2. Materials

Samples of Metglass 2605sc [3] and 2705m were provided by AlliedSignal Inc.

Metglass 2605  has a large magnetostriction (30 ppm saturation magnetostriction), while

2705m has a magnetostriction that is much smaller (much less than 1 ppm) but similar

physical properties.

The magnetoelastic coupling in a magnetoelastic material couples the mechanical

strain in a material to the magnetic field. The total energy of a magnetoelastic material in

a magnetic field is a sum Etotal = EH + Eanis + Eme + Eelas + Estress , where EH is the energy

due to the interaction between the applied magnetic field and the magnetization of the

material, Eanis is the energy due to the magnetic anisotropy of the material (the tendency

of the magnetization to have a preferred direction), Eme is the magnetoelastic coupling

energy, Eelas is the energy due to the intrinsic stiffness of the material, and Estress is the

energy due to an externally applied stress. For a 2-dimensional material with a magnetic
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field H applied along the y axis, an anistropy axis in the x direction, and an externally

applied stress σ in the y direction, the total energy may be written
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where Ms is the saturation magnetization of the material, K is the anisotropy constant,

the C's are elastic constants for the material, the ε's are the stresses, b is the

magnetoelastic coupling constant, and the α 's are the cosines of the angles from the x and

y axes [4].

3. Experiment

The magnetoelastic ribbons were 1 mil thick, and they were made into pieces 25

mm wide by 60 mm long. The ribbons were clamped at the top (across the narrow

direction) and suspended as a pendulum, with a 1.6 g. mass attached to the bottom (Fig.

1). The ribbons were suspended in a pair of Helmholtz coils which provided a DC bias

field of 6 Oe and an AC field of several Oe at frequencies of 3 to several thousand Hz.

Both magnetic fields were in the plane of the ribbon, parallel to the narrow direction. A

pickup coil within the Helmholtz coils detected the AC magnetic field. The ribbons were

not annealed but were used as cast.

The DC bias field was chosen to maximize the response of the ribbon to the AC

driving field. The DC field is small, so the ribbon should still contain magnetic domains.

There are 2 ways in which an AC magnetic field could drive the ribbon: 1) a direct

interaction with components of the magnetization not parallel to the AC field will

produce a force F = γM×H , and 2) the variation of the direction of the magnetization
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will affect the shape of the ribbon through the magnetoelastic coupling. It is difficult to

determine which of these terms is more important, but the experiments below suggest that

both terms have an effect.

Angular deflections of the ribbon were detected be shining a HeNe laser on the

ribbon and detecting the reflected beam. The laser beam was split into 2 parts so that 2

points on the ribbon's surface could be illuminated simultaneously. The surface of the

ribbon was neither smooth or flat, so the reflected laser beams were diffuse. The light

from the reflected beams was directed by mirrors and focussed onto 2 small-area diode

detectors. The detectors each contained a second element that monitored the laser output

directly in order to cancel any low frequency noise caused by laser fluctuations. Motion

of the laser spots across the detectors produced a signal that was proportional to the

angular deflection of the ribbon. Because of the varying surface texture of the ribbon, the

amplitudes of the detected signals from different points could not be directly compared,

although for most of the measurements that we were interested in, relative amplitudes

were not important.

4. Mode Spectra

The 2-dimensional ribbon can bend out of plane, twist, or stretch. The bending

modes have the lowest frequencies, so they are the easiest modes to study. Our AC

driving source limited the highest driving frequency to below approximately 10 kHz,

which is below the frequency of the axial (stretching) modes. The low order bending

modes are within easy reach of our experimental frequency range, so we concentrated on

those modes.
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Structural modes were computed using a Rayleigh-Ritz technique [5], whereby

the bending deflection w(x, y, z, t) of the ribbon is expanded in a series as
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where Ψm(x) and Φn(y) are the classical Euler-Bernoulli clamped-free and free-free beam

functions, the latter of which also includes the two rigid body modes, representing the

approximate structural boundary conditions of no shear and no moment (free end) and no

displacement or rotation (clamped end). Using the expressions for the maximum kinetic

(T) and strain energy (U) present in the freely oscillating ribbon
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where T is computed over the ribbon volume, U is computed over the ribbon planar area,

ρ is the mass density of the ribbon, and D is the flexural rigidity of the ribbon, and ν  is

Poisson's ratio. Substitution of eq. (2) using M = N = 7 into the Lagrangian d(T-U)/dt

with T and U given by eq. (3) results in a 49×49 truncated eigensystem, whose solutions

are the modal frequencies (eigenmodes) and the modal vector participation factors

(eigenvectors) for the system.

5. Experimental Results

A. Spectrum of modes

We detected bending modes in the experiment by varying the driving frequency

between 3 and 300 Hz and recording the amplitude of the detector output when the laser

beam illuminated a fixed spot at the center of the ribbon. Figure 2 shows the amplitude of

the detector output for the nonmagnetostrictive 2705m ribbon. The largest mode peak, at
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80 Hz, is caused by the natural pendulum motion of the ribbon, The other peaks are due

to low order bending modes. The spectrum of the magnetostrictive 2605sc ribbon follows

a similar pattern, except that all modes appear to be at  slightly lower frequencies. We

choose 2 modes, at frequencies of 129 Hz and 259 Hz, for further study, since their

behavior is typical of that seen for the other modes. The 129 Hz mode is not easily visible

on the scale of Fig. 2.

B. Mode shapes

For each of these modes, we scanned one of the laser spots in a grid pattern over

the surface of the ribbon and the phase of the periodic signal at each point was measured

relative to the phase of the AC magnetic field. We used a phase measurement since the

amplitude measurements were not comparable from point to point because of the uneven

surface of the ribbon. The phase measurements were still somewhat noisy from point to

point, so we performed a 2-dimensional Fourier transform on the phase data, discarded

all but the 4 Fourier modes with the largest amplitudes, and inverse transformed. Figure

3(a) shows the calculated mode amplitude for the bending mode at 132 Hz, where white

is the highest value and black is the lowest. Figure 3(b) is the (filtered) phase plot from

the 2705m ribbon for the mode at 129 Hz. We are comparing phase to amplitude, so the

plots will look different, but the overall symmetry is approximately the same.

As Fig. 3(c) shows, the corresponding mode for the magnetostrictive 2605sc

ribbon looks very different. This phase plot was made for the closest mode, at 114 Hz.

The 114 Hz mode in the magnetostrictive ribbon is far more complex than nearby modes

in the nonmagnetostrictive ribbon, and in fact appears to look like a higher order mode.

This pattern was also seen for other modes in the magnetostrictive ribbon- they were far
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more complex than modes at similar frequencies in the nonmagnetostrictive ribbon. A

second phase plot for this mode was made with a larger DC bias field of 35 Oe. The

phase plot for the magnetostrictive ribbon when the bias field was 35 Oe looked

essentially the same as the phase plot for the nonmagnetostrictive ribbon when the bias

field was 6 Oe, suggesting that the complexity of mode plot for the magnetostrictive

ribbon at 6 Oe is caused by magnetic domains. In magnetic materials, the local preferred

direction for the magnetic field may be random at low applied fields, so that the

magnetization vector for the material points in different directions in different regions

(domains) of the material, leading to different mechanical properties for different regions

of a magnetostrictive material. Applying a large enough magnetic field will cause the

magnetization in different parts of the sample to align, so that the mechanical properties

are constant. The 6 Oe field does not appear to be large enough to eliminate the magnetic

domains, but the 35 Oe field seems to eliminate most of the domain structure, so that the

bending mode looks similar to the calculated mode. Calculating the field necessary to

eliminate domains is complicated, and depends on the shape of the material as well as its

properties.

Figure 4 shows another set of modes. Figure 4(a) is the calculated mode

amplitude for the bending mode with a frequency of 256 Hz. Figure 4(b) is the (filtered)

phase plot for the mode at 259 Hz in the nonmagnetostrictive ribbon. Once again, the 2

plots appear to have the same symmetry. Fig. 4(c) is a phase plot for the closest mode in

the magnetostrictive ribbon, at 244 Hz. Although this mode does not appear to have an

unusually high order for its frequency, it does not possess the same symmetry as the

nearby mode in the nonmagnetostrictive ribbon. Once again, using a larger bias field
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causes the mode structure in the magnetostrictive ribbon to mathc the mode structure in

nonmagnetostrictive ribbon.

C. Peak shapes: hysteresis and foldover

The shape of the peaks in the mode spectra also reflects the different nonlinear

interactions present in the magnetostrictive ribbon. As we increase the AC driving field to

fields as high as 12 Oe peak-to-peak, the shape of the peaks in the mode spectrum of the

nonmagnetostrictive 2705m ribbon does not change, but the shape of the peaks in the

mode spectrum of the magnetostrictive 2605sc does change, reflecting the extra nonlinear

interactions caused by the greater magnetostriction of the 2605 ribbon.

Figure 5 shows the peaks at 104 and 114 Hz in the mode spectrum of the 2605sc

ribbon. In Fig. 5(a), the peak to peak AC driving field is 0.2 Oe, in Fig 5(b) the driving

field is 0.4 Oe, and in Fig 5(c) the driving field is 0.8 Oe. The solid line in Fig. 5

corresponds to sweeping the AC driving frequency from low frequency to high

frequency, while the dotted line corresponds to sweeping from high to low. As the AC

driving field is increased, the shape of the peaks at 104 and 114 Hz changes a great deal.

Figure 6 shows the peak at 244 Hz as the AC driving field is increased. Once

again the solid line means that the AC frequency was scanned from low to high and the

dotted line means that the AC frequency was scanned from high to low. In Fig. 6(a), the

driving field was 0.07 Oe peak to peak. In Fig 6(b), the field was 0.7 Oe, in 6(c) it was

1.05 Oe, and in 6(c) it was 1.4 Oe. In Fig. 6(b), (c), and (d), one can  see evidence of

foldover, a frequency sweep dependant change in shape of a resonance peak that occurs

when a resonance frequency is different for high levels of excitation than for low levels.
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Figure 6 also shows that there is a great deal of hysteresis in the resonance peak for this

mode.

D. Bifurcations

Nonlinear effects that may occur in a dynamical system include bifurcations. The

waveforms seen when the nonmagnetostrictive 2705m ribbon is driven do include higher

harmonics, so some nonlinearity is present, but there are no bifurcations. Bifurcations are

seen when the magnetostrictive 2605sc ribbon is driven.

Figure 7 is a bifurcation diagram for the 2605sc ribbon when it is driven at 114

Hz. One of the laser beams is reflected from the center of the ribbon, and the signal from

the corresponding detector is digitized every time that the periodic driving signal crosses

zero (in the positive direction).  The resulting set of points is plotted on the y axis at an x

value corresponding to the peak-to-peak driving field.

Figure 7 shows that up to a driving field of about 0.6 Oe, the ribbon motion is

periodic. The width of the bifurcation plot below this value is caused by experimental

noise.  At a driving field of about 0.6 Oe, a bifurcation occurs. Figure 8 shows Poincare

sections taken by strobing the detector output every time that the driving signal crosses

zero going in the positive direction to produce a time series x(n), and then plotting x(n+1)

vs. x(n). Figure 8(a) is for a driving field of 0.5 Oe, and shows a single point (broadened

by experimental noise), implying a periodic response. Figure 8(b) is the Poincare section

at a driving field of 0.7 Oe. Figure 8(b) looks like the cross section of a complicated

torus, implying that the motion of the ribbon at 0.7 Oe is quasiperiodic. The nature of the

motion is confirmed by the power spectra of Fig. 9. Figure 9 shows power spectra of the

strobed time series, so the highest possible frequency is half the strobing frequency, or 57
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Hz. Figure 9(a) is the strobed power spectrum at 0.7 Oe, showing that an additional

frequency of about 2.2 Hz has appeared in the motion of the ribbon. Power spectra of the

continuous signal from the detector confirm that the only added frequency is at 2.2 Hz.

Figure 9(b) shows the strobed power spectrum at a driving field of 2.6 Oe. The

motion is still quasiperiodic, but now the added frequency is 5 Hz. There is a bending

mode in this ribbon at 5 Hz, so the presence of the 5 Hz signal in the motion of the ribbon

driven at 114 Hz may represent an interaction between two bending modes.

The same type of bifurcation is seen for the mode at 244 Hz. Figure 10 is a

bifurcation diagram for the 244 Hz mode in the magnetoelastic ribbon. The response of

the ribbon is periodic up to an AC driving field of about 3 Oe, at which point a

bifurcation to quasiperiodic motion occurs. Figure 11(a) shows a Poincare section from

the detected at an AC field just below the bifurcation, while Fig 11(b) shows a Poincare

section just above the bifurcation. Below the bifurcation, the signal is periodic (with

some added noise), but above the bifurcation, the signal is complex and possibly

quasiperiodic. The power spectrum of the strobed signal just above the bifurcation (Fig.

12(a) )  confirms that the signal is quasiperiodic, with an added frequency of 2.2 Hz.

Figure 12(b) shows that the added frequency has increased to 5 Hz by the time that the

AC field has increased to 5.4 Oe.

Another bifurcation takes place at approximately 5.7 Oe. The motion of the

ribbon begins to oscillate between periodic and quasiperiodic states, with a very slow

oscillation frequency. Figure 13 is a long-time plot of the strobed detector signal at this

field, showing slow oscillations in the envelope of the signal with a period of about 14 s
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(about 0.07 Hz). The time scale of the response includes frequencies that vary by a factor

of 244/0.7, or approximately 3500.

6. Nonlinear Statistics

The highly nonlinear nature of magnetoelastic materials makes them difficult to

model, especially when they are more than 1-dimensional. For our system, some

modeling may be possible for low driving levels, but for higher driving levels where

some very interesting phenomena occur (such as the very low frequency motion seen in

Fig. 13), it is unlikely that accurate modeling will be practical. We may still learn

something about the motion of the ribbon at large driving amplitudes by using recently

developed statistics to characterize the relation between pairs of nonlinear time series.

A. Description of statistic

In previous work [6], we have developed a statistic Θ
c0  that describes the

likelihood that 2 attractors created by embedding 2 simultaneous time series are related to

each other by a continuous one-to-one function. If Θ
c0 =1, then the attractors are

definitely related by a function; if Θ
c0 =0, then the attractors are definitely not related.

The method for calculating Θ
c0  is described in detail in [6]; we give a brief

description here. One time series is embedded to form a source attractor and one is

embedded to form a target attractor. We determine a useful length scale σ on the target

attractor by choosing a random center point, finding a set of near neighbors, and

calculating the variance for this set of points. If the set of points was simply picked at

random, we would expect to find a much larger variance than if the set of points were

near neighbors. The variances for all possible sets of points randomly selected on the
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target attractor fit a Gaussian distribution, so σ chosen as the average value of this

distribution, and σ is varied so that the probability that randomly selecting a group of

points with the same variance as the group of neighbors is less than 5%. The same

calculation is repeated for many centers to produce an average σ for the target attractor.

We then pick a random point on the source attractor and find all points within

some radius δ of the center point. Because the time series that generated the attractors

were sampled simultaneously, there is a set of points corresponding in time on the target

attractor. If the corresponding set of points on the target attractor are also near neighbors,

then there is probably a continuous functional relationship between attractors; if the

corresponding points are not near neighbors, then there is probably no relationship. The

length scale σ that was calculated for the target attractor is used to determine if a group of

points are neighbors; if the variance of the group of points is much smaller than σ, then

the group of points are probably neighbors, otherwise the group of points are probably

not neighbors. The final product of this calculation is an average statistic Θ
c0 for the

entire attractor, where Θ
c0 =1 means that there is definitely a functional relation between

attractors and Θ
c0 =0 means that there is definitely not a relationship. Θ

c0  may also take

on values between 1 and 0.

B. Experimental Results

One of the time series used to calculate the statistic Θ
c0  came from a laser beam

shining on the center of the ribbon, while the other time series came from a laser beam

that was scanned over the surface of the ribbon. The signals from the two detectors were
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strobed at the driving frequency, so the resulting time series of length 2000 points do not

contain terms at the driving frequency. In all of thest plots, the top left corner of the

ribbon was at the coordiantes (0,0), while the reference beam was in the center of the

ribbon.

Figures 14 and 15 are for the mode at 114 Hz. The largest embedding dimension

calculated from a continuously sampled time series  [7]  was 3, so to be safe an

embedding dimension of 3 was used in order to reconstruct the source and target

attractors from the strobed time series (embedding delay was 1). Figure 14(a) is a plot of

Θ
c0  over the surface of the when the driving amplitude was 1.4 Oe, where white = 1.0

and black = 0.0. Lighter colors predominate, so it appears that in most cases motion on

different parts of the ribbon is functionally related to motion in the center of the ribbon.

Figure 14(b) shows the linear cross correlation between the same sets of time series,

defined as
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where x and y are the two time series.

 The cross correlations shown in 14(b) are not as large as the values of Θ
c0  in

14(a), but the cross correlation measures only the linear relation between time series,

while Θ
c0  measures nonlinear relations. Because these statistics were calculated from

strobed time series, the periodic driving term did not affect the calculations.

Figure 15 shows these same statistics when the driving amplitude was 6.1 Oe.

Figure 15(a) shows the statistic Θ
c0 , while Fig 15(b) shows the cross correlation. Both
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(a) and (b) tend to have lower magnitudes than the corresponding statistics in Fig. 14, so

it is less certain that the motion at all parts of the ribbon is functionally related to motion

at the center. Also in Fig 16(a) and (b)the part of the ribbon for y < 3 cm is darker than

for y > 3 cm, indicating that the motion in the ribbon is different for the two different

regions.

The same statistics for the mode at 244 Hz are shown in Figures 16 and 17. Figure

16 shows the statistics at a driving field of 3.4 Oe, just above the bifurcation in Fig. 10.

Figure 16(a) is the statistic Θ
c0 , while 16(b) is the linear cross correlation. Looking only

at the linear cross correlation in 16(b), one would say that there is not much relation

between the motion of the ribbon at different points (remember that the statistics were

generated from a strobed time series, so the periodic driving term does not influence the

cross correlation), but the nonlinear statistic Θ
c0  in 16(a) shows that there is a strong

functional relation between the motion at different points. The cross correlation only

measures linear relations, while the statistic Θ
c0  is sensitive to nonlinear functions.

The same pattern appears in Fig. 17, for which the driving field was 6 Oe. The

motion seen at this driving field is the same as the motion plotted in Fig. 13; a slow

oscillation between periodic and quasiperiodic motions. The cross correlation plot in

17(b) shows very little cross correlation between the motion at different points on the

ribbon, but the statistic Θ
c0  shows that there is a strong nonlinear relationship between

motion at different points.

7. Conclusions

A comparison between the magnetostrictive and nonmagnetostrictive ribbons

shows that the magnetoelastic interactions defined in eq. (1) made a large difference in
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the motion of the driven ribbons. The most distinctive characteristic of the interaction

was a bifurcation from periodic to quasiperiodic motion as the driving field increased.

The added frequency at the quasiperiodic bifurcation usually corresponded to the

frequency of a lower order mode of the ribbon, suggesting that the driven mode was able

to parametrically excite a lower frequency mode. In the expansion used to calculate these

bending modes, different modes are not orthogonal to each other, so the presence of an

interaction between modes is not surprising, although this interaction was not seen in the

nonmagnetostrictive ribbon. At higher driving levels, very low frequency motion that did

not correspond to any known modes was present. Nonlinear statistics showed that

motions at different points on the ribbon were strongly related to each other, although this

relation was highly nonlinear.

The authors wish to thank Kristl Hathaway for useful discussions.
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Figure captions

Figure 1. Diagram of the experiment.

Figure 2. Amplitude response of a ribbon of nonmagnetostrictive ribbon of

Metglass  2705m as a function of driving frequency.
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Figure 3. (a) Calculated mode amplitude of a bending mode at 132 Hz. (b)

Experimentally measured phase response (filtered) of a mode at 129 Hz in a

nonmagnetostrictive 2705m ribbon. (c) Experimentally measured phase response

(filtered) of a mode at 114 Hz in a magnetostrictive 2605sc ribbon.
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Figure 4. (a) Calculated mode amplitude of a bending mode at 256 Hz. (b)

Experimentally measured phase response (filtered) of a mode at 256 Hz in a

nonmagnetostrictive 2705m ribbon. (c) Experimentally measured phase response

(filtered) of a mode at 244 Hz in a magnetostrictive 2605sc ribbon.
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Figure 5. Amplitude spectrum for the magnetostrictive 2605sc ribbon between 80

and 130 Hz for 3 different values of the driving magnetic field. The solid line

corresponds to sweeping the driving field from low frequency to high frequency, while

the dotted line corresponds to sweeping from high to low. (a) The driving field is 0.2 Oe.

(b) The driving field is 0.4 Oe. (c) the driving field is 0.8 Oe.
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Figure 6. Amplitude spectrum for the magnetostrictive 2605sc ribbon between

210 and 280 Hz for 4 different values of the driving magnetic field. The solid line

corresponds to sweeping the driving field from low frequency to high frequency, while

the dotted line corresponds to sweeping from high to low. (a) The driving field is 0.07

Oe. (b) The driving field is 0.7 Oe. (c) the driving field is 1.05 Oe. (d) The driving field is

1.4 Oe.
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Figure 7. Bifurcation diagram for the magnetostrictive 2605sc ribbon driven at a

frequency of 114 Hz. The peak-to-peak magnetic driving field is h, while x is the value of

the detector output when the driving signal crosses zero in the positive direction.
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Figure 8. Poincare sections for the 2605sc ribbon generated at a driving frequency

of 114 Hz. (a) is for a driving field of 0.5 Oe, while (b) is for a driving field of 0.7 Oe.
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Figure 9. Power spectra of the strobed detector signal for the 2605sc ribbon driven

at 114 Hz. (a) is the spectrum at a driving field of 0.8 Oe, while (b) is for a driving field

of 2.6 Oe.
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Figure 10. Bifurcation diagram for the magnetostrictive 2605sc ribbon driven at a

frequency of 244 Hz. The peak-to-peak magnetic driving field is h, while x is the value of

the detector output when the driving signal crosses zero in the positive direction.

1000

500

0

x 
(a

rb
. u

n
it

s)

654321

h (Oe)



                                                                          25

Figure 11. Poincare sections for the 2605sc ribbon generated at a driving

frequency of 244 Hz. (a) is for a driving field of 1.3 Oe, while (b) is for a driving field of

3.5 Oe.
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Figure 12. Power spectra of the strobed detector signal for the 2605sc ribbon

driven at 244 Hz. (a) is the spectrum at a driving field of 3.5 Oe, while (b) is for a driving

field of 5.4 Oe.
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Figure 13. Time series of the strobed detector signal for the 2605sc ribbon for the

mode at 244 Hz with a driving field of 5.7 Oe.

Figure 14. Plot of statistics relating the strobed signal from the center of the

2605sc ribbon to signals from other points on the ribbon. White represents a value of 1,
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while black represents a value of 0. The driving field was 1.4 Oe with a frequency of 114

Hz. (a) is the value of the nonlinear statistic Θ
c0 , while (b) is the value of the linear cross

correlation.

Figure 15. Plot of statistics relating the strobed signal from the center of the

2605sc ribbon to signals from other points on the ribbon. White represents a value of 1,

while black represents a value of 0. The driving field was 6.1 Oe with a frequency of 114

Hz. (a) is the value of the nonlinear statistic Θ
c0 , while (b) is the value of the linear cross

correlation.
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Figure 16. Plot of statistics relating the strobed signal from the center of the

2605sc ribbon to signals from other points on the ribbon. White represents a value of 1,

while black represents a value of 0. The driving field was 3.4 Oe at a frequencu of 244

Hz. (a) is the value of the nonlinear statistic Θ
c0 , while (b) is the value of the linear cross

correlation.
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Figure 17. Plot of statistics relating the strobed signal from the center of the

2605sc ribbon to signals from other points on the ribbon. White represents a value of 1,

while black represents a value of 0. The driving field was 6 Oe at a frequency of 244 Hz.

(a) is the value of the nonlinear statistic Θ
c0 , while (b) is the value of the linear cross

correlation.
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