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Synchronized chaotic systems are highly vulnerable to noise added to the

synchronizing signal. It was previously shown that chaotic circuits could be built that

were less sensitive to this type of noise. In this work, simple chaotic maps are

demonstrated that are also less sensitive to added noise. These maps are based on

coupling a shift map to a digital filter. These maps are simple enough that they should

help lead to an understanding of how noise-robust chaotic systems work.
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The positive Lyapunov exponents associated with chaotic systems mean that a signal

from one isolated chaotic system will not synchronize with a signal from any other

chaotic system. Chaotic systems may be synchronized by coupling them together,

and these synchronized chaotic systems may have applications in the field of

“spread spectrum” communications, where broad carrier signals are used to

prevent interference with other signals or conceal the presence of the signal itself or

an encoded message. One major problem in applying synchronized chaotic systems

to communications is that if the signal that couples the chaotic signals is transmitted

(over a radio link for example), then other signals from other transmitters or

background noise are also present, and these other signals are picked up be the

receiver along with the coupling signal. These other signals add to the coupling

signal and get injected into the chaotic system, where they  ruin the synchronization.

For existing synchronized chaotic systems, if the added signals approach the size of

the coupling signal, then synchronization is degraded to the point where no

communication is possible

This paper demonstrates that it is possible to build simple chaotic maps that

can synchronize arbitrarily closely even when large interfering signals have been

added to the synchronizing signal. These simple maps consist of two parts: a

modulus map, where a number is multiplied by a constant and only the fractional

part is retained, and a digital filter, which is a map that is designed to have a certain

frequency response. Gaussian white noise is used to approximate the interfering

signals. While the maps in this paper are not practical for a communications system,

in previous work analog electronic circuits were built that synchronized in the



presence of large noise. This paper uses simple maps to aid in understanding how

the noise-resistant chaotic systems work.

Introduction

Synchronized chaotic systems have been suggested for applications in

communications1-9, but in truth, their high noise sensitivity makes the application of these

systems unlikely. In recent work with an analog electronic circuit, it was shown that it

was possible to build synchronized chaotic systems that can achieve arbitrarily small

synchronization error even when large amounts of noise are added to the transmitted

signal10. As of yet, no good theory exists to explain the noise reduction effect in these

circuits. I present here some simple map examples where synchronization error in a noisy

environment is reduced. Because of the particular map design, the practical application of

these maps is limited, but their simplicity should make it easier to understand the noise-

reduction effect

Simple maps

The first example uses a coupled pair of 1-d maps, where one of the maps consists

of a multiplication by a constant and a modulus, while the other map acts as a low pass

filter. The coupled maps are given by

x1 n + 1( ) =1.5x1 n( ) − 0.1 x2 n( ) mod1

x2 n + 1( ) = 4 
 

 
 x1(n) + 1− 1 

 
 
 x2 n( )

                       (1).

Looking at the x2 map alone, it can be seen that its slope will approach 1 as  increases ,

while the term driving the map will decrease, so as  increases the x2 part of the map will

change more and more slowly in response to the x1 driving term, acting as a low-pass



filter. As long as τ > 1 and <  ∞,   the x2 map acts as a low pass filter.  From digital filter

theory 11 , the absolute magnitude of the gain of the x2  map is

A f( ) = 1/ 1+ 2 − 2 cos 2 f( )  where f is the frequency (ranging from 0 to 0.5) and 

=(1-1/ ) . For  = 1 (  = 0) the magnitude of the gain is 1.0 for all frequencies, while A(f)

decreases with f  for  > 1. As  becomes very large,   approaches a limiting value of

1.0, causing the cutoff frequency fc  (defined as the frequency where the amplitude

response is down by a factor of 2 from its maximum) to approach a limiting value,

meaning that little additional filtering effect is gained for values of  >> 10. The factors

of  in the  x1 equation and 4/  in the x2  equation  are present simply to scale the map

values into a convenient range. It should be noted that the x2 map does not contain a

modulus operator. For  = 10, the eigenvalues of the map are 1.2 ± 0.56i . The factor of 

in the x1 map is used to influence the stability properties of the response system.

 Figure 1 shows the power spectra of the signals from the map for  = 10.0.

Figure 1(a) is a power spectrum of x1(n) , while 2(b) is a power spectrum of x2(n).

The response system is

xt n( ) = x1 n( ) +

y1 n +1( ) = 1.5y1 n( ) − 0.1 y2 n( ) +1.5 x t n( ) − y1 n( )( ) mod1

y2 n + 1( ) = 4 
 

 
 y1 n( ) + 1− 1 

 
 
 y2 n( )

             (2).

The term  represents a Gaussian white noise signal. Variations in the stability of the

response system may change its synchronization behavior in the presence of noise, so this



coupling configuration was chosen so that the eigenvalue of the response map with the

largest absolute magnitude was independent of , with a value of  0.63.

When even a small amount of noise is added to the transmitted signal xt , large

errors in synchronization may result because of the sensitive nature of the modulus

function. With even a very small amount of noise, the value of y1(n) might be altered by

the modulus function while x1(n) has not been changed. Sterling 12 has developed a

technique to correct for this problem: the feedback signal at the next iteration is computed

and compared to the same signal when y1 differs by the amount of the modulus:

y f =
{j=−1,0,1}

min xt n +1( ) − [y1 n +1( ) + j]{ }

y1 n +1( ) → y1 n + 1( ) + jmin

                                        (3).

The next value of y1(n) is corrected by adding the value of j that minimizes yf .

Figure 2 shows the rms synchronization error   when the noise signal   had a

rms amplitude of 0.05 and  was varied (the standard deviation of x1(n) was 0.28). The

synchronization error   was the rms value of x2(n) - y2(n) divided by the rms value of

x2(n) . The dark circles in Fig. 2 show that the synchronization error decreases as 

increases. The synchronization error approaches a lower bound as  increases because the

filter cutoff frequency does not change much for  >> 10, as explained above. The noise

level of 0.18 (noise rms/signal rms) is shown as a horizontal line in Fig. 2.

Since the y2 map is the low pass filter in the response system, it is legitimate to

ask if the y1 part of the response system is necessary at all. As an alternative, the driving

signal was input directly into the y2 map:



y2 n + 1( ) =
4 

 
 
 xt + 1−

1 
 

 
 y2 n( )                                     (4).

This response system was stable. The synchronization error for this configuration is

shown in Fig. 2 as open squares. The synchronization error in this case does not decrease

as  increases, but rather stays close to the noise level of xt .

Map with band-pass filter

The noise-reduction effect can be larger in more complicated maps. The next

example is a 2-d linear map coupled to an IIR (infinite impulse response) bandpass filter.

In an IIR filter, delayed versions of the previous signal may be multiplied by constants

and fed back into the filter. The bandpass filter is designed from standard digital filter

design techniques.

A digital filter of order N performs the sums

            y tn( ) = k xN − k
k = 0

N

∑ − kyN − k
k − 1

N

∑                                                     (5)

where y is the output signal and x is the input signal 11. For an IIR  filter, feedback is

present, so some of the  ‘s are nonzero. Techniques for calculating the filter coefficients

are well known. For a 2nd order bandpass filter with gain Ar  , center frequency fc , and

quality factor Q = fc/ f ,

                   0 =
lAr / Q

1 + l / Q + l2 ; 1 =
2 1 − l2( )

1+ l / Q + l2 ; 2 =
1 −l / Q − l2

1+ l / Q + l2                            (6)

where l = cotangent(  fc ). The filter coefficients usually contain a factor to account for

the sampling rate, but since this is a map, the sampling rate is set to 1.

The second map used as an example is



x0 n + 1( ) = 1.6x0 n( ) − 1.2x1 n( ) − x2 n( ) m o d 1

x1 n + 1( ) = 0.5x0 n( ) + 0.7x1 n( )

x2 n +1( ) = 0 x0 n( ) − 1x2 n( ) − 2x3 n( )
x3 n + 1( ) = x2 n( )

xt n( ) = k0x0 n( ) + k1x1 n( ) +

                                          (7)

where  ,  and   are coefficients for a bandpass filter, as described above, and   is an

additive Gaussian white noise term. Note that the modulus only applies to the equation

for x0 . The map is defined in this way to make it easier to use the method of Sterling 12

described above to account for errors in the response map caused by the modulus term.

The signal that is transmitted to the response map is xt , where k0 and k1  are determined

by minimizing the largest Lyapunov exponent for the response map 13,14.  Figure 3(a)

shows the power spectrum of the transmitted signal xt , while Fig. 3(b) shows the power

spectrum for the map signal x2, both for a filter frequency fc = 0.01 and Q = 1. Because of

the mod 1 term, there is a DC offset in the map signals, but this DC term has been

removed from the power spectrum plots for clarity.

The response system is based on a map that is identical to the drive system. The

response map is described by

yt n( ) = k0y0 n( ) + k1y1 n( )

y0 n + 1( ) =1.6y0 n( ) − 1.2y1 n( ) − y2 n( )+ b0 xt − yt( ) mod1

y1 n + 1( ) = 0.5y0 n( ) + 0.7y1 n( ) + b1 xt − yt( )

y2 n + 1( ) = 0 y0 n( ) − 1y2 n( ) − 2 y3 n( )
y3 n +1( ) = y2 n( )

                          (8)



The constants b0 and b1  are found by minimizing the largest Lyapunov exponent for the

response system 13,14 (the k’s and b’s are found simultaneously). As before, the method of

Sterling is used to correct for errors in synchronization caused by the modulus term.

Unfortunately, this modulus correction method is observed to be ineffective when the

additive noise is much greater than 10% of the transmitted signal, so only low noise

simulations are possible here.

Figure 4 shows the synchronization error when Gaussian white noise was added

to the transmitted signal. The rms value of the noise was 10% of the rms value of the

transmitted signal. The synchronization error    was the rms value of (x2 – y2 ) divided by

the rms value of x2 . The filter center frequency ranged from fc = 0.001 to fc = 0.01. The

dark circles in Fig. 4 show the synchronization error when the response map of eq. (8)

was used. As the filter frequency fc decreased, the synchronization error also decreased.

In order to demonstrate that the error reduction was not simply due to filtering by the

bandpass filter, this digital filter was also used as a response:

xt n( ) = x0 n( ) +

y2 n + 1( ) = 0xt n( ) − 1y2 n( ) − 2y3 n( )
y3 n + 1( ) = y2 n( )

                                            (9).

The response system of eq. (9) is just the bandpass filter, driven by  x0 only, with 10%

Gaussian noise added. The open squares in Fig. 4 show that no reduction in

synchronization error was seen when the response system was a simple bandpass filter.

The observed synchronization error of 0.1 is the same as the noise level.

Conclusions

In work on an analog circuit 10, the noise reduction effect was attributed to a

separation of time scales between the two parts of the circuit. It can be seen here that such



a separation is not necessary: the transmitted signal is actually broad-band. It is likely that

the low frequency part of the map is extracting some low-frequency statistics from the

broad-band signal. It would be useful to synchronize a subsystem of one of these maps

which did not contain a modulus term so that the difficulties associated with this type of

nonlinearity could be avoided, but so far, the noise reduction effect has not been observed

in purely linear subsystems. The noise reduction effect may be observable in other types

of maps where the nonlinearity is not due to a modulus, but there may be other practical

difficulties in implementing other maps (or flows).The response system should be stable

even when noise much larger than the transmitted signal is present, but if the response

Jacobian contains nonlinear terms, it is likely that these terms will become large for large

noise. The fact that the noise reduction effect is present for broad-band signals holds

some promise for signal separation if other response systems can be found.
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Figure Captions

Figure 1(a) Power spectrum of the transmitted signat xt from the map of eq. (1). (b)

Power spectrum of the signal x2 from the map of eq. (1).
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Figure 2. Dark circles show synchronization error as a function of time constant  for the

response system of eq. (2) when the added noise is about 18% of the transmitted signal.

The open squares show the synchronization error when only a simple filter (as in eq. (4) )

is used for the response system.
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Figure 3(a). Power spectrum of the transmitted signal xt  from the map of eq. (7). (b)

Power spectrum of the x2 signal from the same map.
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Figure 4. Dark circles show the synchronization error for the response map of eq. (8) as a

function of filter center frequency fc when the added noise was 10% of the transmitted

signal. The open squares show the synchronization error when the response system was

the bandpass filter of eq. (9).
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