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Abstract

Work on self-synchronizing systems for communications has had limited prac-
ticality because the chaotic signals were not as easy to detect in the presence
of noise as conventional spread-spectrum signals. This difficulty may actually
be an advantage in some cases, where one wants to conceal the existence of
the communications signal. Conventional communications signals are cyclo-
stationary; while they may look random, they have statistical properties that
vary periodically. One may design chaotic communication signals that lack

this cyclostationary property, and therefore are harder to detect.
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I. INTRODUCTION

While there has been much study of chaos applied to communications [1-13], in many
cases the chaos is more of a burden then an asset. Using chaotic signals instead of periodic
signals, or using self-synchronizing receivers instead of stored reference receivers, usually
results in signals that are harder to detect than conventional periodic or spread spectrum
signals.

There are some situations where one wants a signal that is hard for an eavesdropper to
detect (known as Low Probability of Detection, or LPD, communications [14]), and there
may be some application of chaos in this type of communication. Conventional communi-
cations, including spread spectrum, is based on periodic carrier signals, which are obviously
artificial and have statistical properties such as cyclostationary [14] that aid in their detec-
tion. Chaotic carrier signals may be generated by circuits that simulate natural processes,
so they may not be so obviously artificial, and it is possible to generate chaotic carriers
which are not cyclostationary. While I am interested in generating LPD signals, I make no
attempt in this paper to address questions of security. I am only interested in how difficult
it is to determine that a communication signal is present, and not in how difficult it is to

extract information from that signal.

II. CYCLOSTATIONARITY

Random signals may have statistical properties that vary periodically with time, in which
case they are called cyclostationary [14,15]. Cyclostationarity may be detected in a signal
by calculating the autocorrelation of the power spectrum . If x(¢) is a signal and X (f) is its

Fourier transform, then the autocorrelation of the power spectrum is
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A large cross correlation at a particular frequency in the Fourier spectrum indicates the
presence of cyclostationarity (an analogous result holds for discrete signals). From the
Wiener-Khintchine theorem [16] , the Fourier transform of the autocorrelation of a signal is
the square of the Fourier transform of the signal. To find the autocorrelation of the frequency
spectrum, one may simply take the square of x(t), Fourier transform, and search for large

components at discrete frequencies.

I1I. DIRECT SEQUENCE SPREAD SPECTRUM

In order to say something is hard to detect, I must say "hard to detect compared to
what”. For comparison, I generated a simulated direct sequence spread spectrum (DSSS)
signal [17,18]. In direct sequence spread spectrum, the information signal is a digital signal
running at some rate n bits/s . The spreading signal is a pseudo-random signal running at
a faster rate. For this example, I use a rate of 50n bits/s . The spreading signal multiplies
the information signal (in binary fashion) to produce the spread information signal, which is
then modulated onto a periodic carrier. In order to simulate the modulation, I use a simple
modulation called binary phase shift keying (BPSK) [18], where the phase of the carrier is
modulated between 2 phases: a phase of 0 for a binary 0 and a phase of 7 radians for a
binary 1.

Since the spreading signal has a greater bandwidth than the information signal, it spreads
the spectrum of the periodic carrier. Figure 1 shows the power spectrum of a periodic signal
before and after being modulated with a spreading signal. The peak power in the spread
signal is greatly reduced from the unspread signal, and that reduction in power is used
to hide the spread signal below the background noise level. The DSSS receiver correlates a

stored pseudorandom sequence with the transmitted signal to recover the information signal.



IV. CHAOTIC SYSTEM

The direct sequence spread spectrum system is capable of operating at very low signal to
noise ratios, but its dependence on a periodic carrier is a weak point. The periodic carrier
causes the DSSS signal to be cyclostationary, Even though the signal itself is broadband,
squaring the signal makes it much easier to detect.

Although some narrowband chaotic signals may be cyclostationary, it is possible to gen-
erate broadband chaotic signals that are not cyclostationary. If the carrier signal is truly
chaotic, it never repeats, and a stored reference receiver will not work. Instead, a self-
synchronizing chaotic receiver is used. Self-synchronizing systems require more signal en-
ergy in noisy environments than stored reference systems, but self-synchronizing systems
are potentially simpler to build.

The well known Lorenz system [19] is one example of a broadband chaotic system. The
Lorenz system is difficult to build as a circuit, however, and self-synchronized Lorenz systems
[4] are sensitive to added noise. I have previously built self-synchronizing chaotic circuits
which T could use to communicate when the noise levels were much larger than the signal
[20-22], but these circuits required a carrier signal that contained 2 narrowband signals well
separated in frequency. In this paper, I design a similar chaotic system that has a broad
frequency spectrum centered in one band. At the heart of this broad-band chaotic system
is a Rossler-like chaotic system with a variable time constant. This first part of the chaotic

system is described by

d
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The system of eq. (2) is just the piecewise-linear Rossler system described in [23] with
a variable time constant. The time constant 7 is fixed, but the signal o varies with time,
effectively varying the time constants of eq.(2), which causes the frequency of the chaotic
oscillator to vary. A low frequency limit cycle oscillator generates the time constant variation
signal @ . The low frequency oscillator is self oscillatory but is also driven by the signal x4

from eq. (2). The limit cycle oscillator is described by

d
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The function f is a bounds function used to keep « from getting too large or too small.
The constant m sets the amount of spreading. The signal ( is a phase synchronization signal
(to be described later) used to inject information into the limit cycle oscillator. Typically,
the ratio 71 /72 is approximately 100, so that the signal « causes the time constant for eq. (2)
to change slowly in an irregular fashion. Equations (2-3) are enough to produce a broadband
chaotic signal, but the phase of the signal x4 ( information will be encoded on the phase of
x4 ) is easily determined from the envelope of any of the signals from eq. (2). A further step
is necessary to reduce the detectability of the information signal. Equation eq. (4) describes
a second limit cycle oscillator whose frequency is close to the limit cycle oscillator of eq. (3)

but incommensurate

d
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At the same time, the signal o that modulates the time constant for eq. (2) becomes

a=1+ f(x47) (5)

and the x4 equation from eq. (3) becomes

dzx
d—t4 = —75(0.0224 + 0.525 + z6 + 0.5 | 21| + 0.207 + c£) (6)

For this paper, 4 = 10, 5 = 0.1, 73 = 0.279, and m = 0.2, and eq. (2-6) were numerically
simulated with a 4’th order Runge-Kutta routine [16] using a time step of 0.04 s. Figure 2
shows attractors for the chaotic part and the 2 limit cycle oscillators. The chaotic oscillator
of eq. (2) is nearly periodic, so the concept of phase may be used to produce a driving
signal. The driving signal is the phase of the chaotic Rossler oscillator, and is calculated as

T2

p=—— (7)
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An advantage to using this phase signal to drive the response system is that the peak
to peak amplitude is constant, as can be seen in Fig. 3. Inevitably, the amplitude of z
will change as a result of the transmission of z, but an automatic gain control may be
implemented to restore the amplitude of z at the receiver. The type of receiver used below
is also not that sensitive to the exact amplitude of z , so amplitude fluctuations will not
have a large effect on the receiver. Figure 3 also shows a power spectrum of z , showing that
z is a broadband signal. The shape of the power spectrum of z may be altered by varying

the spreading function f in eq. (5).



V. RESPONSE SYSTEM

The chaotic drive system is based on 3 subsystems, all of which oscillate independently,
so it is not possible to build a response system which exactly synchronizes to the drive
system. The response system is designed so that the limit cycle parts phase synchronize [24]
to their counterparts in the drive system, and information is encoded on the phase of the
limit cycle. The signal that varies the time constant of the chaotic system may be recovered
from the transmitted signal z. Although a short time series of z looks like a periodic signal
with a slow frequency modulation, the unmodulated version of z is not periodic but chaotic.
The phase of z varies chaotically. Because z is chaotic, the time constant variation can’t be
recovered by a phase locked loop, which assumes that the carrier phase is constant and all
phase variation comes from the modulating signal. Instead, a simpler technique based on a

bandpass filter is used. A bandpass filter [25] is modeled by

dby 1 dz 1
dt ~ RCdl R
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where Ry = 14,261 Q, Ry = 2R, , and R3 = Rl , and C' = 10{ — 5) F. Equation (8)
models a bandpass filter with a () of 1 and a center frequency of 1.117 Hz, corresponding to
the peak frequency of the chaotic system in eq. (2) when « is fixed at 1.

The bandpass filter passes signals at the center frequency with no phase shift but shifts
the phase of signals not at the center frequency, so the filter output ¥ will be shifted in phase
from the filter input z by an amount corresponding to the amplitude of the time constant

variation signal o . The signal « is recovered approximately as the signal 13, where
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The rest of the response system is described by
v =2—0.015¢3
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The response system is not an exact replica of the drive system, and synchronization is

phase modulation signal £ in eq. (3) is set equal to

£ = s;sin(wit) — 0.1xy

not exact. There is phase synchronization between y4 in the response and x4 in the drive

(as shown in Fig. 4), so information is transmitted by modulating the phase of a4 [26]. The

(11)

where s; = £1 depending on the value of the binary information signal, and the coupling

(3). The phase of y, is determined by a phase locked loop [25] in the receiver.
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constant ¢ = 0.2, and w/27 = 0.0115 Hz, the frequency of the limit cycle oscillator of eq.



VI. INFORMATION DETECTION

There are 2 types of detection considered in this paper, detection of the information
contained in the communication signal and detection of the communications signal itself.
Producing a signal which can’t be detected by an adversary is not very useful if we can’t
detect the information content ourselves, so detection of the information content is consid-
ered first. As described above, the information signal is phase-modulated onto the x4 signal
in eq. (3) and detected by detecting the phase of the y4 signal in eq. (10). The standard
method that engineers use to characterize communication efficiency is to plot the bit error
rate (B(ER)) [18] as a function of the energy in one bit, normalized by the noise power
spectral density (a flat noise spectrum is assumed), abbreviated as £y /Nj.

Figure 5 is a plot of the performance for the transmitter and receiver of eq. (2-11), with
noise that occupies the same bandwidth as the signal. Fig. 5 shows performance for the
receiver of eq. (8-10) and a receiver where the phase is detected directly from the recovered
time constant modulation signal 5 in eq. (9). The performance plot for 5 is included
to show that it is more difficult to detect the information content of the communication
signal if one doesn’t know specific receiver details. The bit energies required to achieve low
bit error rates in Fig. 5 are actually quite large compared to the bit energies required for
conventional communications signals [18] (such as the DSSS signal), but the goal in those
cases is to make signals that are easy to detect, while the goal in this paper is to create s
signal that is hard to detect. The increased bit energy required to detect the information
content for the present method is due to 2 things: self synchronizing receivers do not perform
as well as the stored reference receivers used in conventional communications, and the yy
signal in the response system takes a long time to phase synchronize with the x4 signal in
the drive system. The coupling between the limit cycle oscillator that generates x4 (and y4
) and the chaotic system that generates the transmitted signal is weak and nonlinear, so
synchronization is slow. The weak coupling is necessary to make the communications signal

harder to detect. In practical applications, there may be hardware considerations that make



the higher power requirements of the current method less of a disadvantage.

VII. DETECTABILITY

For covert communications, it is important that even the presence of a communications
signal not be detectable, since the signal is a beacon that gives away the location of the
transmitter. The simplest way to detect a signal is to detect the signal power, but if there
are other features of the signal, such as cyclostationarity, then signal detection can be easier
than simply looking for power.

In order to calculate the probability of detection [14], some signal statistic is chosen, and
the probability distribution for this statistic is found when there is no signal (only noise is
present) and when the signal plus noise are present. The DSSS signal is cyclostationary [15],
so this property is used to aid in detection. In the power spectrum of the squared DSSS
signal in Fig. 6, a peak at twice the carrier frequency is obvious. I estimate the probability
distribution of the power at this frequency with noise only or with noise plus signal present.
The overlap in these probability distributions is the probability of either falsely detecting
a signal or missing the presence of a signal. Subtracting the overlap area from 1.0 gives
the probability of detection. Figure 7 shows the probability of detection P; as a function of
signal to noise ratio Sy for the DSSS signal.

Figure 8 is the power spectrum of the squared signal z, the transmitted signal from the
chaotic system. The power spectrum of z? is still broad band because there are no strong
correlations in its frequency spectrum as there were for the DSSS signal with a periodic
carrier. The presence of the signal z can only be inferred by looking for transmitted power,
a method known as the radiometer method [14], so the chaotic signal will be harder to
detect. Probability distributions for noise only and noise plus the signal z are estimated by
measuring the average power present in the signal. The resulting probability of detection
is also plotted in Fig. 7 as a function of signal to noise ratios. Eventually the curves for

the DSSS signal and the chaos signal in Fig. 7 come together because in both cases the
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probability of detection approaches 0 for low signal to noise ratios.

VIII. CONCLUSIONS

This paper has demonstrated that the lack of a periodic carrier signal makes chaotic
signals easier to hide than conventional digital communications signals. The amount of
energy needed to transmit this particular chaotic signal was large, but the main point here
was to demonstrate that a noncyclostationary chaotic signal could be used as a carrier
signal, even when background noise was larger than the signal. There are other properties
of communications signals that one may also want to hide. Higher order statistics can also
reveal the type of modulation used, [14] which can give information about who sent the
signal. It is also possible to detect the chip rate [18] in a communications signal, which is
the clock rate for the underlying digital system. It may be possible to better conceal this

identifying information by using nonperiodic chaotic signals to carry the information signal.
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FIGURES

FIG. 1. (a) Power spectrum of a sinusoidal carrier signal before modulation with a direct
sequence spread spectrum signal. (b) Power spectrum of the carrier signal after modulation with

a direct sequence spread spectrum signal.

FIG. 2. (a) Attractor from chaotic part of the driving system eq. (2). (b) Attractor from
first limit cycle oscillator of the driving system of eq. (3). (¢) Attractor from second limit cycle

oscillator eq. (4) from the driving system.

FIG. 3. (a) Transmitted signal z. (b) Power spectrum of transmitted signal z.

FIG. 4. Signal y4 from the response system (eq. 10) plotted vs. z4 from the driving system of

eq. (3), showing phase synchronization.

FIG. 5. Bit error rates (B(ER)) as a function of energy per bit normalized by noise power
spectral density (F3/Ng) for two different receivers. The black circles are for the full chaotic
response system of eq. (8-10), while the open squares are for a conventional receiver defined by
eqs. (8-9).

FIG. 6. Power spectrum of the squared direct sequence spread spectrum signal.

FIG. 7. Probability of detection P as a function of signal to noise ratio Sy for the direct

sequence spread spectrum signal (open squares) and the chaotic signal (black circles).

FIG. 8. Power spectrum of z? | where z is the chaotic communication signal of eq. eq. (7).
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FIG. 1. (a) Power spectrum of a sinusoidal carrier signal before modulation with a direct
sequence spread spectrum signal. (b) Power spectrum of the carrier signal after modulation with

a direct sequence spread spectrum signal.
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FIG. 2. (a) Attractor from chaotic part of the driving system eq. (2). (b) Attractor from
O rst limit cycle oscillator of the driving system of eq. (3). (c¢) Attractor from second limit cycle
oscillator eq. (4) from the driving system.
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FIG. 3. (@) Transmitted signal z. (b) Power spectrum of transmitted signal z.
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FIG. 4. Signal y4 from the response system (eq. 10) plotted vs. x4 from the driving system of
eg. (3), showing phase synchronization.
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FIG. 6. Power spectrum of the squared direct sequence spread spectrum signal.
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